Properties

Label 2-45-1.1-c5-0-1
Degree $2$
Conductor $45$
Sign $1$
Analytic cond. $7.21727$
Root an. cond. $2.68649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.52·2-s − 19.6·4-s + 25·5-s − 80.4·7-s + 181.·8-s − 88.0·10-s + 520.·11-s + 421.·13-s + 283.·14-s − 12.3·16-s + 1.16e3·17-s + 1.17e3·19-s − 490.·20-s − 1.83e3·22-s + 2.37e3·23-s + 625·25-s − 1.48e3·26-s + 1.57e3·28-s − 7.05e3·29-s − 5.56e3·31-s − 5.77e3·32-s − 4.09e3·34-s − 2.01e3·35-s + 2.38e3·37-s − 4.12e3·38-s + 4.54e3·40-s + 8.38e3·41-s + ⋯
L(s)  = 1  − 0.622·2-s − 0.612·4-s + 0.447·5-s − 0.620·7-s + 1.00·8-s − 0.278·10-s + 1.29·11-s + 0.692·13-s + 0.386·14-s − 0.0120·16-s + 0.975·17-s + 0.743·19-s − 0.273·20-s − 0.807·22-s + 0.935·23-s + 0.200·25-s − 0.430·26-s + 0.380·28-s − 1.55·29-s − 1.03·31-s − 0.996·32-s − 0.607·34-s − 0.277·35-s + 0.287·37-s − 0.463·38-s + 0.448·40-s + 0.779·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(7.21727\)
Root analytic conductor: \(2.68649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.123897691\)
\(L(\frac12)\) \(\approx\) \(1.123897691\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 25T \)
good2 \( 1 + 3.52T + 32T^{2} \)
7 \( 1 + 80.4T + 1.68e4T^{2} \)
11 \( 1 - 520.T + 1.61e5T^{2} \)
13 \( 1 - 421.T + 3.71e5T^{2} \)
17 \( 1 - 1.16e3T + 1.41e6T^{2} \)
19 \( 1 - 1.17e3T + 2.47e6T^{2} \)
23 \( 1 - 2.37e3T + 6.43e6T^{2} \)
29 \( 1 + 7.05e3T + 2.05e7T^{2} \)
31 \( 1 + 5.56e3T + 2.86e7T^{2} \)
37 \( 1 - 2.38e3T + 6.93e7T^{2} \)
41 \( 1 - 8.38e3T + 1.15e8T^{2} \)
43 \( 1 - 2.05e4T + 1.47e8T^{2} \)
47 \( 1 - 8.35e3T + 2.29e8T^{2} \)
53 \( 1 - 2.83e4T + 4.18e8T^{2} \)
59 \( 1 - 3.75e4T + 7.14e8T^{2} \)
61 \( 1 + 5.73e4T + 8.44e8T^{2} \)
67 \( 1 + 4.58e4T + 1.35e9T^{2} \)
71 \( 1 - 4.15e4T + 1.80e9T^{2} \)
73 \( 1 - 7.68e4T + 2.07e9T^{2} \)
79 \( 1 + 7.00e3T + 3.07e9T^{2} \)
83 \( 1 + 9.32e4T + 3.93e9T^{2} \)
89 \( 1 - 7.07e3T + 5.58e9T^{2} \)
97 \( 1 - 2.24e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.66784970969022019510655850936, −13.68496200415498815155107445593, −12.61180369256250028057802710003, −11.01034771856315258632575862221, −9.596994509059774957244181837257, −9.023182964180726345828141504177, −7.35453074034000674602867122277, −5.70691639151721770956250193902, −3.76406847311085762487158546967, −1.11486975673290849705631102973, 1.11486975673290849705631102973, 3.76406847311085762487158546967, 5.70691639151721770956250193902, 7.35453074034000674602867122277, 9.023182964180726345828141504177, 9.596994509059774957244181837257, 11.01034771856315258632575862221, 12.61180369256250028057802710003, 13.68496200415498815155107445593, 14.66784970969022019510655850936

Graph of the $Z$-function along the critical line