Properties

Label 2-44e2-1.1-c1-0-6
Degree $2$
Conductor $1936$
Sign $1$
Analytic cond. $15.4590$
Root an. cond. $3.93179$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.61·3-s − 1.23·5-s + 2·7-s + 3.85·9-s − 3.23·13-s + 3.23·15-s + 1.61·17-s − 0.854·19-s − 5.23·21-s + 3.23·23-s − 3.47·25-s − 2.23·27-s − 4.47·29-s − 2·31-s − 2.47·35-s + 9.70·37-s + 8.47·39-s + 3.38·41-s − 11.5·43-s − 4.76·45-s − 2.47·47-s − 3·49-s − 4.23·51-s − 10.4·53-s + 2.23·57-s + 6.38·59-s + 6.47·61-s + ⋯
L(s)  = 1  − 1.51·3-s − 0.552·5-s + 0.755·7-s + 1.28·9-s − 0.897·13-s + 0.835·15-s + 0.392·17-s − 0.195·19-s − 1.14·21-s + 0.674·23-s − 0.694·25-s − 0.430·27-s − 0.830·29-s − 0.359·31-s − 0.417·35-s + 1.59·37-s + 1.35·39-s + 0.528·41-s − 1.76·43-s − 0.710·45-s − 0.360·47-s − 0.428·49-s − 0.593·51-s − 1.43·53-s + 0.296·57-s + 0.830·59-s + 0.828·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1936\)    =    \(2^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(15.4590\)
Root analytic conductor: \(3.93179\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1936,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7553151074\)
\(L(\frac12)\) \(\approx\) \(0.7553151074\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + 2.61T + 3T^{2} \)
5 \( 1 + 1.23T + 5T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
13 \( 1 + 3.23T + 13T^{2} \)
17 \( 1 - 1.61T + 17T^{2} \)
19 \( 1 + 0.854T + 19T^{2} \)
23 \( 1 - 3.23T + 23T^{2} \)
29 \( 1 + 4.47T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 - 9.70T + 37T^{2} \)
41 \( 1 - 3.38T + 41T^{2} \)
43 \( 1 + 11.5T + 43T^{2} \)
47 \( 1 + 2.47T + 47T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 - 6.38T + 59T^{2} \)
61 \( 1 - 6.47T + 61T^{2} \)
67 \( 1 - 0.0901T + 67T^{2} \)
71 \( 1 - 0.763T + 71T^{2} \)
73 \( 1 - 12.6T + 73T^{2} \)
79 \( 1 - 13.4T + 79T^{2} \)
83 \( 1 - 6.32T + 83T^{2} \)
89 \( 1 - 3.09T + 89T^{2} \)
97 \( 1 - 13.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.394732666464411374227570891017, −8.152100452353656423129835180312, −7.59633390116369086616235710865, −6.75429646742206895419835629351, −5.93493231876623354282234034511, −5.05811441201296786859328302841, −4.65171650062445769599650040151, −3.51226659073175426096000204201, −1.98142789675670840777899883802, −0.62553718956490124072933769419, 0.62553718956490124072933769419, 1.98142789675670840777899883802, 3.51226659073175426096000204201, 4.65171650062445769599650040151, 5.05811441201296786859328302841, 5.93493231876623354282234034511, 6.75429646742206895419835629351, 7.59633390116369086616235710865, 8.152100452353656423129835180312, 9.394732666464411374227570891017

Graph of the $Z$-function along the critical line