L(s) = 1 | + 0.304·3-s − 35.5·5-s − 49·7-s − 242.·9-s + 565.·11-s − 983.·13-s − 10.8·15-s + 200.·17-s + 828.·19-s − 14.9·21-s − 4.43e3·23-s − 1.86e3·25-s − 147.·27-s + 3.71e3·29-s − 992.·31-s + 172.·33-s + 1.74e3·35-s + 8.35e3·37-s − 299.·39-s − 1.34e4·41-s + 298.·43-s + 8.62e3·45-s + 1.87e4·47-s + 2.40e3·49-s + 60.8·51-s − 1.60e4·53-s − 2.00e4·55-s + ⋯ |
L(s) = 1 | + 0.0195·3-s − 0.635·5-s − 0.377·7-s − 0.999·9-s + 1.40·11-s − 1.61·13-s − 0.0123·15-s + 0.167·17-s + 0.526·19-s − 0.00737·21-s − 1.74·23-s − 0.596·25-s − 0.0390·27-s + 0.820·29-s − 0.185·31-s + 0.0275·33-s + 0.240·35-s + 1.00·37-s − 0.0314·39-s − 1.25·41-s + 0.0246·43-s + 0.635·45-s + 1.23·47-s + 0.142·49-s + 0.00327·51-s − 0.784·53-s − 0.895·55-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(448s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.111193557 |
L(21) |
≈ |
1.111193557 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+49T |
good | 3 | 1−0.304T+243T2 |
| 5 | 1+35.5T+3.12e3T2 |
| 11 | 1−565.T+1.61e5T2 |
| 13 | 1+983.T+3.71e5T2 |
| 17 | 1−200.T+1.41e6T2 |
| 19 | 1−828.T+2.47e6T2 |
| 23 | 1+4.43e3T+6.43e6T2 |
| 29 | 1−3.71e3T+2.05e7T2 |
| 31 | 1+992.T+2.86e7T2 |
| 37 | 1−8.35e3T+6.93e7T2 |
| 41 | 1+1.34e4T+1.15e8T2 |
| 43 | 1−298.T+1.47e8T2 |
| 47 | 1−1.87e4T+2.29e8T2 |
| 53 | 1+1.60e4T+4.18e8T2 |
| 59 | 1−1.27e4T+7.14e8T2 |
| 61 | 1−3.49e4T+8.44e8T2 |
| 67 | 1−1.19e4T+1.35e9T2 |
| 71 | 1−1.29e4T+1.80e9T2 |
| 73 | 1−8.11e4T+2.07e9T2 |
| 79 | 1+4.69e4T+3.07e9T2 |
| 83 | 1+1.11e5T+3.93e9T2 |
| 89 | 1+3.47e4T+5.58e9T2 |
| 97 | 1−9.26e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09722694272163780500435925270, −9.484110496366488042071638998902, −8.434913414151653896298519983112, −7.58675218674520602490354732949, −6.59478390328425456077222121689, −5.61560310304633749081479944148, −4.36394503355686493807207108902, −3.41404759561890926887120510069, −2.20470176531966949214438510023, −0.52178033605158052394811031589,
0.52178033605158052394811031589, 2.20470176531966949214438510023, 3.41404759561890926887120510069, 4.36394503355686493807207108902, 5.61560310304633749081479944148, 6.59478390328425456077222121689, 7.58675218674520602490354732949, 8.434913414151653896298519983112, 9.484110496366488042071638998902, 10.09722694272163780500435925270