Properties

Label 2-448-1.1-c5-0-24
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $71.8519$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 26.3·3-s + 97.5·5-s − 49·7-s + 448.·9-s + 406.·11-s + 905.·13-s − 2.56e3·15-s + 359.·17-s + 1.81e3·19-s + 1.28e3·21-s + 2.16e3·23-s + 6.38e3·25-s − 5.41e3·27-s + 4.09e3·29-s − 4.45e3·31-s − 1.06e4·33-s − 4.77e3·35-s − 8.93e3·37-s − 2.38e4·39-s − 3.41e3·41-s − 8.69e3·43-s + 4.37e4·45-s − 1.42e4·47-s + 2.40e3·49-s − 9.46e3·51-s + 1.46e4·53-s + 3.96e4·55-s + ⋯
L(s)  = 1  − 1.68·3-s + 1.74·5-s − 0.377·7-s + 1.84·9-s + 1.01·11-s + 1.48·13-s − 2.94·15-s + 0.301·17-s + 1.15·19-s + 0.637·21-s + 0.852·23-s + 2.04·25-s − 1.42·27-s + 0.903·29-s − 0.831·31-s − 1.70·33-s − 0.659·35-s − 1.07·37-s − 2.50·39-s − 0.317·41-s − 0.717·43-s + 3.22·45-s − 0.937·47-s + 0.142·49-s − 0.509·51-s + 0.714·53-s + 1.76·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(71.8519\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.121532546\)
\(L(\frac12)\) \(\approx\) \(2.121532546\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 49T \)
good3 \( 1 + 26.3T + 243T^{2} \)
5 \( 1 - 97.5T + 3.12e3T^{2} \)
11 \( 1 - 406.T + 1.61e5T^{2} \)
13 \( 1 - 905.T + 3.71e5T^{2} \)
17 \( 1 - 359.T + 1.41e6T^{2} \)
19 \( 1 - 1.81e3T + 2.47e6T^{2} \)
23 \( 1 - 2.16e3T + 6.43e6T^{2} \)
29 \( 1 - 4.09e3T + 2.05e7T^{2} \)
31 \( 1 + 4.45e3T + 2.86e7T^{2} \)
37 \( 1 + 8.93e3T + 6.93e7T^{2} \)
41 \( 1 + 3.41e3T + 1.15e8T^{2} \)
43 \( 1 + 8.69e3T + 1.47e8T^{2} \)
47 \( 1 + 1.42e4T + 2.29e8T^{2} \)
53 \( 1 - 1.46e4T + 4.18e8T^{2} \)
59 \( 1 - 2.13e4T + 7.14e8T^{2} \)
61 \( 1 + 5.40e4T + 8.44e8T^{2} \)
67 \( 1 - 4.49e4T + 1.35e9T^{2} \)
71 \( 1 + 5.70e3T + 1.80e9T^{2} \)
73 \( 1 - 4.76e4T + 2.07e9T^{2} \)
79 \( 1 + 5.80e3T + 3.07e9T^{2} \)
83 \( 1 - 2.70e4T + 3.93e9T^{2} \)
89 \( 1 + 9.62e4T + 5.58e9T^{2} \)
97 \( 1 - 1.01e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35824490871653557204063131149, −9.642333797594491744076953674747, −8.807300170854804333568177762058, −6.90782291772210852074803451635, −6.38555066611836927786076304783, −5.67855508764826129490640752499, −4.99110009073321185303252887932, −3.43498930681517332967113222293, −1.57286552843896914422680995142, −0.931995593441399261942238545215, 0.931995593441399261942238545215, 1.57286552843896914422680995142, 3.43498930681517332967113222293, 4.99110009073321185303252887932, 5.67855508764826129490640752499, 6.38555066611836927786076304783, 6.90782291772210852074803451635, 8.807300170854804333568177762058, 9.642333797594491744076953674747, 10.35824490871653557204063131149

Graph of the $Z$-function along the critical line