Properties

Label 2-4416-1.1-c1-0-80
Degree $2$
Conductor $4416$
Sign $-1$
Analytic cond. $35.2619$
Root an. cond. $5.93817$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 1.23·5-s + 3.23·7-s + 9-s − 4·11-s + 4.47·13-s − 1.23·15-s − 2.76·17-s − 7.23·19-s + 3.23·21-s + 23-s − 3.47·25-s + 27-s − 4.47·29-s − 6.47·31-s − 4·33-s − 4.00·35-s − 4.47·37-s + 4.47·39-s − 10.9·41-s + 5.70·43-s − 1.23·45-s − 4·47-s + 3.47·49-s − 2.76·51-s + 5.23·53-s + 4.94·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.552·5-s + 1.22·7-s + 0.333·9-s − 1.20·11-s + 1.24·13-s − 0.319·15-s − 0.670·17-s − 1.66·19-s + 0.706·21-s + 0.208·23-s − 0.694·25-s + 0.192·27-s − 0.830·29-s − 1.16·31-s − 0.696·33-s − 0.676·35-s − 0.735·37-s + 0.716·39-s − 1.70·41-s + 0.870·43-s − 0.184·45-s − 0.583·47-s + 0.496·49-s − 0.387·51-s + 0.719·53-s + 0.666·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4416\)    =    \(2^{6} \cdot 3 \cdot 23\)
Sign: $-1$
Analytic conductor: \(35.2619\)
Root analytic conductor: \(5.93817\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4416,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
23 \( 1 - T \)
good5 \( 1 + 1.23T + 5T^{2} \)
7 \( 1 - 3.23T + 7T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 - 4.47T + 13T^{2} \)
17 \( 1 + 2.76T + 17T^{2} \)
19 \( 1 + 7.23T + 19T^{2} \)
29 \( 1 + 4.47T + 29T^{2} \)
31 \( 1 + 6.47T + 31T^{2} \)
37 \( 1 + 4.47T + 37T^{2} \)
41 \( 1 + 10.9T + 41T^{2} \)
43 \( 1 - 5.70T + 43T^{2} \)
47 \( 1 + 4T + 47T^{2} \)
53 \( 1 - 5.23T + 53T^{2} \)
59 \( 1 - 4.94T + 59T^{2} \)
61 \( 1 + 4.47T + 61T^{2} \)
67 \( 1 + 0.763T + 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 - 6.94T + 73T^{2} \)
79 \( 1 - 9.70T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 + 1.23T + 89T^{2} \)
97 \( 1 - 8.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.115997781253412285452799498290, −7.50248475251985106727903395171, −6.67169948047704505004965306015, −5.68658064749301217449407748682, −4.92608224608797885293664641535, −4.12259063501064428436824062782, −3.50872506551610863095515269526, −2.27377589777439877721660510282, −1.66213090439218947759706895598, 0, 1.66213090439218947759706895598, 2.27377589777439877721660510282, 3.50872506551610863095515269526, 4.12259063501064428436824062782, 4.92608224608797885293664641535, 5.68658064749301217449407748682, 6.67169948047704505004965306015, 7.50248475251985106727903395171, 8.115997781253412285452799498290

Graph of the $Z$-function along the critical line