Properties

Label 2-4416-1.1-c1-0-31
Degree $2$
Conductor $4416$
Sign $1$
Analytic cond. $35.2619$
Root an. cond. $5.93817$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3.23·5-s + 1.23·7-s + 9-s + 4·11-s − 4.47·13-s − 3.23·15-s − 7.23·17-s + 2.76·19-s − 1.23·21-s − 23-s + 5.47·25-s − 27-s + 4.47·29-s − 2.47·31-s − 4·33-s + 4.00·35-s + 4.47·37-s + 4.47·39-s + 6.94·41-s + 7.70·43-s + 3.23·45-s + 4·47-s − 5.47·49-s + 7.23·51-s + 0.763·53-s + 12.9·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.44·5-s + 0.467·7-s + 0.333·9-s + 1.20·11-s − 1.24·13-s − 0.835·15-s − 1.75·17-s + 0.634·19-s − 0.269·21-s − 0.208·23-s + 1.09·25-s − 0.192·27-s + 0.830·29-s − 0.444·31-s − 0.696·33-s + 0.676·35-s + 0.735·37-s + 0.716·39-s + 1.08·41-s + 1.17·43-s + 0.482·45-s + 0.583·47-s − 0.781·49-s + 1.01·51-s + 0.104·53-s + 1.74·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4416\)    =    \(2^{6} \cdot 3 \cdot 23\)
Sign: $1$
Analytic conductor: \(35.2619\)
Root analytic conductor: \(5.93817\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4416,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.282908287\)
\(L(\frac12)\) \(\approx\) \(2.282908287\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
23 \( 1 + T \)
good5 \( 1 - 3.23T + 5T^{2} \)
7 \( 1 - 1.23T + 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + 4.47T + 13T^{2} \)
17 \( 1 + 7.23T + 17T^{2} \)
19 \( 1 - 2.76T + 19T^{2} \)
29 \( 1 - 4.47T + 29T^{2} \)
31 \( 1 + 2.47T + 31T^{2} \)
37 \( 1 - 4.47T + 37T^{2} \)
41 \( 1 - 6.94T + 41T^{2} \)
43 \( 1 - 7.70T + 43T^{2} \)
47 \( 1 - 4T + 47T^{2} \)
53 \( 1 - 0.763T + 53T^{2} \)
59 \( 1 - 12.9T + 59T^{2} \)
61 \( 1 - 4.47T + 61T^{2} \)
67 \( 1 - 5.23T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 10.9T + 73T^{2} \)
79 \( 1 - 3.70T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 - 3.23T + 89T^{2} \)
97 \( 1 + 0.472T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.507716418999817764574548290266, −7.40494721912235168355962595950, −6.75262703450261873663320916954, −6.18206608454870779948807654788, −5.45658927915618676565695952104, −4.72794266175950756363362897090, −4.06345242718058504815478985112, −2.55101066063760646660556144537, −1.98720633005334702452871899136, −0.898696741706639839845683108283, 0.898696741706639839845683108283, 1.98720633005334702452871899136, 2.55101066063760646660556144537, 4.06345242718058504815478985112, 4.72794266175950756363362897090, 5.45658927915618676565695952104, 6.18206608454870779948807654788, 6.75262703450261873663320916954, 7.40494721912235168355962595950, 8.507716418999817764574548290266

Graph of the $Z$-function along the critical line