Properties

Label 2-4400-5.4-c1-0-89
Degree $2$
Conductor $4400$
Sign $0.447 - 0.894i$
Analytic cond. $35.1341$
Root an. cond. $5.92740$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.37i·3-s − 3.37i·7-s − 8.37·9-s + 11-s − 2i·13-s + 1.37i·17-s + 0.627·19-s − 11.3·21-s + 2.74i·23-s + 18.1i·27-s − 1.37·29-s − 3.37·31-s − 3.37i·33-s + 9.37i·37-s − 6.74·39-s + ⋯
L(s)  = 1  − 1.94i·3-s − 1.27i·7-s − 2.79·9-s + 0.301·11-s − 0.554i·13-s + 0.332i·17-s + 0.144·19-s − 2.48·21-s + 0.572i·23-s + 3.48i·27-s − 0.254·29-s − 0.605·31-s − 0.587i·33-s + 1.54i·37-s − 1.07·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4400\)    =    \(2^{4} \cdot 5^{2} \cdot 11\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(35.1341\)
Root analytic conductor: \(5.92740\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4400} (4049, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4400,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3316294667\)
\(L(\frac12)\) \(\approx\) \(0.3316294667\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 3.37iT - 3T^{2} \)
7 \( 1 + 3.37iT - 7T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
17 \( 1 - 1.37iT - 17T^{2} \)
19 \( 1 - 0.627T + 19T^{2} \)
23 \( 1 - 2.74iT - 23T^{2} \)
29 \( 1 + 1.37T + 29T^{2} \)
31 \( 1 + 3.37T + 31T^{2} \)
37 \( 1 - 9.37iT - 37T^{2} \)
41 \( 1 + 11.4T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + 2.74iT - 47T^{2} \)
53 \( 1 - 4.11iT - 53T^{2} \)
59 \( 1 + 2.74T + 59T^{2} \)
61 \( 1 + 5.37T + 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 + 10.1T + 71T^{2} \)
73 \( 1 - 15.4iT - 73T^{2} \)
79 \( 1 + 1.25T + 79T^{2} \)
83 \( 1 + 2.74iT - 83T^{2} \)
89 \( 1 - 1.37T + 89T^{2} \)
97 \( 1 + 12.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52599943485706968751987318481, −7.18445026377063499692972966602, −6.50249783921226254108290353212, −5.82597794915152695227948618028, −4.94914978772049109497872386507, −3.67873383664517524517418738092, −2.98774732300977688835295660072, −1.77020855893307414728841043438, −1.16801658907948672190248690030, −0.093828597756472670784077859717, 2.09322377564879452144978989159, 2.97562575468675274402049678728, 3.70968632322391249084089892410, 4.53178910656260754766161459466, 5.16288920834698826539077202299, 5.77943756141398281180757960966, 6.48282946856966168488423370169, 7.72272039813499957343486580118, 8.747565346826612705162285058200, 8.961704177121559746697378447529

Graph of the $Z$-function along the critical line