L(s) = 1 | + 3-s − 7-s − 2·9-s + 11-s + 17-s − 19-s − 21-s − 5·27-s − 29-s + 31-s + 33-s + 37-s − 6·43-s − 8·47-s − 6·49-s + 51-s + 9·53-s − 57-s − 4·59-s − 7·61-s + 2·63-s + 4·67-s − 5·71-s + 14·73-s − 77-s − 4·79-s + 81-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.377·7-s − 2/3·9-s + 0.301·11-s + 0.242·17-s − 0.229·19-s − 0.218·21-s − 0.962·27-s − 0.185·29-s + 0.179·31-s + 0.174·33-s + 0.164·37-s − 0.914·43-s − 1.16·47-s − 6/7·49-s + 0.140·51-s + 1.23·53-s − 0.132·57-s − 0.520·59-s − 0.896·61-s + 0.251·63-s + 0.488·67-s − 0.593·71-s + 1.63·73-s − 0.113·77-s − 0.450·79-s + 1/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 3 | \( 1 - T + p T^{2} \) |
| 7 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 + p T^{2} \) |
| 17 | \( 1 - T + p T^{2} \) |
| 19 | \( 1 + T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + T + p T^{2} \) |
| 31 | \( 1 - T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 6 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 9 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 7 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 + 5 T + p T^{2} \) |
| 73 | \( 1 - 14 T + p T^{2} \) |
| 79 | \( 1 + 4 T + p T^{2} \) |
| 83 | \( 1 + 16 T + p T^{2} \) |
| 89 | \( 1 + 7 T + p T^{2} \) |
| 97 | \( 1 + 16 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.227326837622866265008796590544, −7.30585158597649557226756040516, −6.55580953383084523336225101016, −5.84613831007330099419015653788, −5.04523007135713372903963223204, −4.04919364705774213673393910855, −3.28418393568304306414564053333, −2.58966013719884848890127061396, −1.51155837193770356965403922878, 0,
1.51155837193770356965403922878, 2.58966013719884848890127061396, 3.28418393568304306414564053333, 4.04919364705774213673393910855, 5.04523007135713372903963223204, 5.84613831007330099419015653788, 6.55580953383084523336225101016, 7.30585158597649557226756040516, 8.227326837622866265008796590544