Properties

Label 2-4400-1.1-c1-0-56
Degree $2$
Conductor $4400$
Sign $1$
Analytic cond. $35.1341$
Root an. cond. $5.92740$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.52·3-s + 3.46·7-s + 3.37·9-s + 11-s + 5.04·17-s − 4·19-s + 8.74·21-s − 2.52·23-s + 0.939·27-s − 2.74·29-s + 2.37·31-s + 2.52·33-s + 11.0·37-s − 2.74·41-s + 3.46·43-s + 6.63·47-s + 4.99·49-s + 12.7·51-s + 3.16·53-s − 10.0·57-s + 1.62·59-s + 10.7·61-s + 11.6·63-s − 0.644·67-s − 6.37·69-s − 7.11·71-s + 6.92·73-s + ⋯
L(s)  = 1  + 1.45·3-s + 1.30·7-s + 1.12·9-s + 0.301·11-s + 1.22·17-s − 0.917·19-s + 1.90·21-s − 0.526·23-s + 0.180·27-s − 0.509·29-s + 0.426·31-s + 0.439·33-s + 1.81·37-s − 0.428·41-s + 0.528·43-s + 0.967·47-s + 0.714·49-s + 1.78·51-s + 0.435·53-s − 1.33·57-s + 0.211·59-s + 1.37·61-s + 1.47·63-s − 0.0787·67-s − 0.767·69-s − 0.844·71-s + 0.810·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4400\)    =    \(2^{4} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(35.1341\)
Root analytic conductor: \(5.92740\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.153712175\)
\(L(\frac12)\) \(\approx\) \(4.153712175\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - 2.52T + 3T^{2} \)
7 \( 1 - 3.46T + 7T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 5.04T + 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + 2.52T + 23T^{2} \)
29 \( 1 + 2.74T + 29T^{2} \)
31 \( 1 - 2.37T + 31T^{2} \)
37 \( 1 - 11.0T + 37T^{2} \)
41 \( 1 + 2.74T + 41T^{2} \)
43 \( 1 - 3.46T + 43T^{2} \)
47 \( 1 - 6.63T + 47T^{2} \)
53 \( 1 - 3.16T + 53T^{2} \)
59 \( 1 - 1.62T + 59T^{2} \)
61 \( 1 - 10.7T + 61T^{2} \)
67 \( 1 + 0.644T + 67T^{2} \)
71 \( 1 + 7.11T + 71T^{2} \)
73 \( 1 - 6.92T + 73T^{2} \)
79 \( 1 + 12.7T + 79T^{2} \)
83 \( 1 + 6.63T + 83T^{2} \)
89 \( 1 + 4.37T + 89T^{2} \)
97 \( 1 - 4.10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.390995326499322718135050463166, −7.76397387615528532613845812428, −7.32402973840239320002015741793, −6.15989143307654824344692062519, −5.34716846700326993552583506077, −4.32332960256848921493586343134, −3.85738657331385750700049087305, −2.78407341009622079396080676794, −2.08004079805798229675021501766, −1.17715645263611409629467705286, 1.17715645263611409629467705286, 2.08004079805798229675021501766, 2.78407341009622079396080676794, 3.85738657331385750700049087305, 4.32332960256848921493586343134, 5.34716846700326993552583506077, 6.15989143307654824344692062519, 7.32402973840239320002015741793, 7.76397387615528532613845812428, 8.390995326499322718135050463166

Graph of the $Z$-function along the critical line