L(s) = 1 | + (−1.35 + 0.413i)2-s + (1.65 − 1.11i)4-s + 2.23i·5-s + 5.22i·7-s + (−1.78 + 2.19i)8-s + 3·9-s + (−0.924 − 3.02i)10-s − 3.31·11-s − 3.56i·13-s + (−2.15 − 7.06i)14-s + (1.5 − 3.70i)16-s − 4.55·17-s + (−4.05 + 1.23i)18-s + (2.49 + 3.70i)20-s + (4.48 − 1.37i)22-s + ⋯ |
L(s) = 1 | + (−0.956 + 0.292i)2-s + (0.829 − 0.559i)4-s + 0.999i·5-s + 1.97i·7-s + (−0.629 + 0.776i)8-s + 9-s + (−0.292 − 0.956i)10-s − 1.00·11-s − 0.989i·13-s + (−0.576 − 1.88i)14-s + (0.375 − 0.927i)16-s − 1.10·17-s + (−0.956 + 0.292i)18-s + (0.559 + 0.829i)20-s + (0.956 − 0.292i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.776 - 0.629i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.776 - 0.629i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.242807 + 0.685320i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.242807 + 0.685320i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.35 - 0.413i)T \) |
| 5 | \( 1 - 2.23iT \) |
| 11 | \( 1 + 3.31T \) |
good | 3 | \( 1 - 3T^{2} \) |
| 7 | \( 1 - 5.22iT - 7T^{2} \) |
| 13 | \( 1 + 3.56iT - 13T^{2} \) |
| 17 | \( 1 + 4.55T + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 8.94iT - 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 9.96T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 14.8iT - 71T^{2} \) |
| 73 | \( 1 - 17.0T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 13.3T + 83T^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.14651665321399773015777526083, −10.50460627694327540378884858517, −9.661738367265311843218001202877, −8.740071605569473133923920466990, −7.909840899024970377690132049867, −6.94308496849376462543442396790, −6.01654008216427264296971664117, −5.15074269428149715895914210055, −2.93488902559951309423605711162, −2.15156041156792855193469903162,
0.60588845843525547709351263525, 1.92334628374516996205980650557, 3.94723977293757253136950591216, 4.56854975919748306827623734219, 6.44973975553309128053023597986, 7.41265017799420695868306755668, 7.901596286861465506522793965038, 9.161865722653018904770423008347, 9.847488199109010562473272431942, 10.66499713614374383555032267789