L(s) = 1 | + (1.35 + 0.413i)2-s + (1.65 + 1.11i)4-s − 2.23i·5-s + 5.22i·7-s + (1.78 + 2.19i)8-s + 3·9-s + (0.924 − 3.02i)10-s − 3.31·11-s − 3.56i·13-s + (−2.15 + 7.06i)14-s + (1.5 + 3.70i)16-s + 4.55·17-s + (4.05 + 1.23i)18-s + (2.49 − 3.70i)20-s + (−4.48 − 1.37i)22-s + ⋯ |
L(s) = 1 | + (0.956 + 0.292i)2-s + (0.829 + 0.559i)4-s − 0.999i·5-s + 1.97i·7-s + (0.629 + 0.776i)8-s + 9-s + (0.292 − 0.956i)10-s − 1.00·11-s − 0.989i·13-s + (−0.576 + 1.88i)14-s + (0.375 + 0.927i)16-s + 1.10·17-s + (0.956 + 0.292i)18-s + (0.559 − 0.829i)20-s + (−0.956 − 0.292i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.776 - 0.629i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.776 - 0.629i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.39340 + 0.847976i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.39340 + 0.847976i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.35 - 0.413i)T \) |
| 5 | \( 1 + 2.23iT \) |
| 11 | \( 1 + 3.31T \) |
good | 3 | \( 1 - 3T^{2} \) |
| 7 | \( 1 - 5.22iT - 7T^{2} \) |
| 13 | \( 1 + 3.56iT - 13T^{2} \) |
| 17 | \( 1 - 4.55T + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 8.94iT - 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 9.96T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 + 14.8iT - 71T^{2} \) |
| 73 | \( 1 + 17.0T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 13.3T + 83T^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.72992776805557076840855379139, −10.34942729975050510635705350414, −9.358582619043435355250669694224, −8.193690244787279364667765282787, −7.72534379608498835510152759457, −6.07306141971815345200993968253, −5.42983292874079523908372954729, −4.75878713840564443509196778712, −3.21652829301743973662760598595, −2.00221807795488904148558950136,
1.51273901426729815649090301606, 3.20377256278119633203474158549, 4.02597956323174448780330672281, 4.98660225949117995124282830350, 6.52709959235934808021726601013, 7.13880551671549791550874448004, 7.72604409181563599846670677217, 9.929923696670362365153670149085, 10.29328640366246344961263581096, 10.89924304149410840665522379671