L(s) = 1 | + (0.413 + 1.35i)2-s + (−1.65 + 1.11i)4-s − 2.23i·5-s − 0.856i·7-s + (−2.19 − 1.78i)8-s + 3·9-s + (3.02 − 0.924i)10-s + 3.31·11-s + 6.26i·13-s + (1.15 − 0.353i)14-s + (1.5 − 3.70i)16-s + 6.87·17-s + (1.23 + 4.05i)18-s + (2.49 + 3.70i)20-s + (1.37 + 4.48i)22-s + ⋯ |
L(s) = 1 | + (0.292 + 0.956i)2-s + (−0.829 + 0.559i)4-s − 0.999i·5-s − 0.323i·7-s + (−0.776 − 0.629i)8-s + 9-s + (0.956 − 0.292i)10-s + 1.00·11-s + 1.73i·13-s + (0.309 − 0.0946i)14-s + (0.375 − 0.927i)16-s + 1.66·17-s + (0.292 + 0.956i)18-s + (0.559 + 0.829i)20-s + (0.292 + 0.956i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.629 - 0.776i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.629 - 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.48846 + 0.709671i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.48846 + 0.709671i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.413 - 1.35i)T \) |
| 5 | \( 1 + 2.23iT \) |
| 11 | \( 1 - 3.31T \) |
good | 3 | \( 1 - 3T^{2} \) |
| 7 | \( 1 + 0.856iT - 7T^{2} \) |
| 13 | \( 1 - 6.26iT - 13T^{2} \) |
| 17 | \( 1 - 6.87T + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 8.94iT - 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 8.52T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 14.8iT - 71T^{2} \) |
| 73 | \( 1 - 0.261T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 12.3T + 83T^{2} \) |
| 89 | \( 1 + 13.2T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.66208518182085144817021675331, −9.819147569317204792552699914042, −9.438715897276313416837001590212, −8.428345013739192940105762745825, −7.44639975518371170965584024142, −6.65683359409199541009275770173, −5.57196517466677408526459482580, −4.37235030950362240854056711885, −3.91418779930792673463398559075, −1.34942630710739335362661198599,
1.37218370888045847559374843920, 3.00352123287499253346728047560, 3.68880475980048710200765409470, 5.13541439739446968252117506256, 6.10923082118420682285931258375, 7.30194273942333045168123277657, 8.368639861695920889153780865430, 9.664812337651073746244426914471, 10.21865846513264841726896406894, 10.86237800021760056071852307632