L(s) = 1 | + (−0.413 + 1.35i)2-s + (−1.65 − 1.11i)4-s + 2.23i·5-s − 0.856i·7-s + (2.19 − 1.78i)8-s + 3·9-s + (−3.02 − 0.924i)10-s + 3.31·11-s + 6.26i·13-s + (1.15 + 0.353i)14-s + (1.5 + 3.70i)16-s − 6.87·17-s + (−1.23 + 4.05i)18-s + (2.49 − 3.70i)20-s + (−1.37 + 4.48i)22-s + ⋯ |
L(s) = 1 | + (−0.292 + 0.956i)2-s + (−0.829 − 0.559i)4-s + 0.999i·5-s − 0.323i·7-s + (0.776 − 0.629i)8-s + 9-s + (−0.956 − 0.292i)10-s + 1.00·11-s + 1.73i·13-s + (0.309 + 0.0946i)14-s + (0.375 + 0.927i)16-s − 1.66·17-s + (−0.292 + 0.956i)18-s + (0.559 − 0.829i)20-s + (−0.292 + 0.956i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.629 - 0.776i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.629 - 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.481822 + 1.01057i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.481822 + 1.01057i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.413 - 1.35i)T \) |
| 5 | \( 1 - 2.23iT \) |
| 11 | \( 1 - 3.31T \) |
good | 3 | \( 1 - 3T^{2} \) |
| 7 | \( 1 + 0.856iT - 7T^{2} \) |
| 13 | \( 1 - 6.26iT - 13T^{2} \) |
| 17 | \( 1 + 6.87T + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 8.94iT - 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 8.52T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 + 14.8iT - 71T^{2} \) |
| 73 | \( 1 + 0.261T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 12.3T + 83T^{2} \) |
| 89 | \( 1 + 13.2T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18898493914252853217935251514, −10.45627465016167566711549792309, −9.407619014247225808728072022846, −8.868030331441813475434935971963, −7.39806162339166241551887378567, −6.79181095740568489914130978115, −6.35384445473610865220369722198, −4.57323542968418820370244060559, −3.93284646746835353349176796951, −1.76684075556930808688493665619,
0.855905429141141288064684164211, 2.25872236264795694304878807226, 3.88827883951702434038043298902, 4.63986528109313714569756561661, 5.85673839051167269809535614836, 7.40180589414354876781822873532, 8.371800254716522446018279006314, 9.144962323300286900258091184565, 9.837552058400489895622650977506, 10.82270695667421849957068382850