| L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s − 7-s + 8-s − 10-s − 11-s + 12-s − 14-s − 15-s + 16-s − 17-s + 19-s − 20-s − 21-s − 22-s + 24-s + 25-s − 27-s − 28-s + 29-s − 30-s − 31-s + 32-s − 33-s + ⋯ |
| L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s − 7-s + 8-s − 10-s − 11-s + 12-s − 14-s − 15-s + 16-s − 17-s + 19-s − 20-s − 21-s − 22-s + 24-s + 25-s − 27-s − 28-s + 29-s − 30-s − 31-s + 32-s − 33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.542321455\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.542321455\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 11 | \( 1 + T \) |
| good | 3 | \( 1 - T + T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( 1 + T + T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( ( 1 + T )^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( ( 1 - T )^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49224344932933597184742166535, −10.64746265284260230193195696558, −9.526113001601595603269014903391, −8.410931813833626754146247747806, −7.60277852316471105448457529630, −6.77826121012606742620202192372, −5.51387184979870445819446952534, −4.27400744398550312427954188179, −3.27026414301545688130900697464, −2.60574323356518423165035776118,
2.60574323356518423165035776118, 3.27026414301545688130900697464, 4.27400744398550312427954188179, 5.51387184979870445819446952534, 6.77826121012606742620202192372, 7.60277852316471105448457529630, 8.410931813833626754146247747806, 9.526113001601595603269014903391, 10.64746265284260230193195696558, 11.49224344932933597184742166535