| L(s) = 1 | + 2-s − 3-s + 4-s + 5-s − 6-s − 7-s + 8-s + 10-s + 11-s − 12-s − 14-s − 15-s + 16-s − 17-s − 19-s + 20-s + 21-s + 22-s − 24-s + 25-s + 27-s − 28-s − 29-s − 30-s − 31-s + 32-s − 33-s + ⋯ |
| L(s) = 1 | + 2-s − 3-s + 4-s + 5-s − 6-s − 7-s + 8-s + 10-s + 11-s − 12-s − 14-s − 15-s + 16-s − 17-s − 19-s + 20-s + 21-s + 22-s − 24-s + 25-s + 27-s − 28-s − 29-s − 30-s − 31-s + 32-s − 33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.203590666\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.203590666\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - T \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 - T \) |
| good | 3 | \( 1 + T + T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( 1 + T + T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( ( 1 - T )^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( ( 1 - T )^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30760242304718401420675634499, −10.80237501820045346716064373016, −9.769061055061837628316273718683, −8.808518338963401595855599801284, −6.95124049271711626634931610216, −6.39079666766011395590792057464, −5.79859937462210122165599987861, −4.75471478260800469118493250092, −3.48796811994734313649172580572, −2.01548309327795849820138984267,
2.01548309327795849820138984267, 3.48796811994734313649172580572, 4.75471478260800469118493250092, 5.79859937462210122165599987861, 6.39079666766011395590792057464, 6.95124049271711626634931610216, 8.808518338963401595855599801284, 9.769061055061837628316273718683, 10.80237501820045346716064373016, 11.30760242304718401420675634499