| L(s) = 1 | + (0.109 + 1.40i)2-s + 2.58·3-s + (−1.97 + 0.308i)4-s + (0.464 + 2.18i)5-s + (0.283 + 3.65i)6-s + 1.54i·7-s + (−0.650 − 2.75i)8-s + 3.70·9-s + (−3.03 + 0.894i)10-s + i·11-s + (−5.11 + 0.798i)12-s − 0.752·13-s + (−2.18 + 0.169i)14-s + (1.20 + 5.66i)15-s + (3.80 − 1.21i)16-s − 1.76i·17-s + ⋯ |
| L(s) = 1 | + (0.0772 + 0.997i)2-s + 1.49·3-s + (−0.988 + 0.154i)4-s + (0.207 + 0.978i)5-s + (0.115 + 1.49i)6-s + 0.585i·7-s + (−0.230 − 0.973i)8-s + 1.23·9-s + (−0.959 + 0.282i)10-s + 0.301i·11-s + (−1.47 + 0.230i)12-s − 0.208·13-s + (−0.583 + 0.0452i)14-s + (0.310 + 1.46i)15-s + (0.952 − 0.304i)16-s − 0.427i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.427 - 0.904i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.427 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.12834 + 1.78115i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.12834 + 1.78115i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.109 - 1.40i)T \) |
| 5 | \( 1 + (-0.464 - 2.18i)T \) |
| 11 | \( 1 - iT \) |
| good | 3 | \( 1 - 2.58T + 3T^{2} \) |
| 7 | \( 1 - 1.54iT - 7T^{2} \) |
| 13 | \( 1 + 0.752T + 13T^{2} \) |
| 17 | \( 1 + 1.76iT - 17T^{2} \) |
| 19 | \( 1 + 6.61iT - 19T^{2} \) |
| 23 | \( 1 - 4.37iT - 23T^{2} \) |
| 29 | \( 1 + 1.83iT - 29T^{2} \) |
| 31 | \( 1 - 6.97T + 31T^{2} \) |
| 37 | \( 1 + 4.70T + 37T^{2} \) |
| 41 | \( 1 - 6.83T + 41T^{2} \) |
| 43 | \( 1 - 5.43T + 43T^{2} \) |
| 47 | \( 1 + 1.78iT - 47T^{2} \) |
| 53 | \( 1 + 3.54T + 53T^{2} \) |
| 59 | \( 1 - 0.926iT - 59T^{2} \) |
| 61 | \( 1 + 11.3iT - 61T^{2} \) |
| 67 | \( 1 + 10.4T + 67T^{2} \) |
| 71 | \( 1 - 10.7T + 71T^{2} \) |
| 73 | \( 1 + 3.66iT - 73T^{2} \) |
| 79 | \( 1 + 15.4T + 79T^{2} \) |
| 83 | \( 1 + 11.5T + 83T^{2} \) |
| 89 | \( 1 - 13.3T + 89T^{2} \) |
| 97 | \( 1 + 15.4iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.40180324704795646615921360762, −10.01166748092444075803361935990, −9.348550244185809939060138487218, −8.668059063493717166098815523872, −7.61222367469305851028029455706, −7.07736689708357845872287340490, −5.94634591723889458352853551339, −4.62361168732094955582416641420, −3.32697423127235013967256531248, −2.43920394212800001836567171162,
1.30050565760211578945682205739, 2.53422351740276024202945262787, 3.75705620070136771244273191709, 4.47241833984667646842303731633, 5.86641742219444669558743997741, 7.69446122744948270946089093097, 8.414328425862950519367818595828, 9.005537488322462686472235541164, 9.931691978990723933569288628947, 10.54360925434893724736591561109