L(s) = 1 | + (0.220 − 0.678i)3-s + (−0.809 + 0.587i)5-s + (0.116 + 0.357i)7-s + (2.01 + 1.46i)9-s + (−0.107 + 3.31i)11-s + (2.28 + 1.66i)13-s + (0.220 + 0.678i)15-s + (3.91 − 2.84i)17-s + (0.905 − 2.78i)19-s + 0.268·21-s + 3.77·23-s + (0.309 − 0.951i)25-s + (3.16 − 2.30i)27-s + (2.60 + 8.03i)29-s + (−6.50 − 4.72i)31-s + ⋯ |
L(s) = 1 | + (0.127 − 0.391i)3-s + (−0.361 + 0.262i)5-s + (0.0439 + 0.135i)7-s + (0.671 + 0.488i)9-s + (−0.0322 + 0.999i)11-s + (0.634 + 0.461i)13-s + (0.0569 + 0.175i)15-s + (0.949 − 0.689i)17-s + (0.207 − 0.639i)19-s + 0.0585·21-s + 0.786·23-s + (0.0618 − 0.190i)25-s + (0.609 − 0.443i)27-s + (0.484 + 1.49i)29-s + (−1.16 − 0.848i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.300i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.953 - 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46861 + 0.226196i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46861 + 0.226196i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 + (0.107 - 3.31i)T \) |
good | 3 | \( 1 + (-0.220 + 0.678i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.116 - 0.357i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.28 - 1.66i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.91 + 2.84i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.905 + 2.78i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 3.77T + 23T^{2} \) |
| 29 | \( 1 + (-2.60 - 8.03i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (6.50 + 4.72i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.877 - 2.70i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.14 - 3.53i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 6.48T + 43T^{2} \) |
| 47 | \( 1 + (-0.800 + 2.46i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.0394 - 0.0286i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (0.509 + 1.56i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (7.03 - 5.11i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 11.4T + 67T^{2} \) |
| 71 | \( 1 + (11.4 - 8.30i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.158 - 0.488i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (10.5 + 7.63i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (2.21 - 1.60i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 12.0T + 89T^{2} \) |
| 97 | \( 1 + (13.0 + 9.44i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22201409007987224620879359672, −10.27971267349164670316100503701, −9.393887982678359082115641878374, −8.353740188481386864660898370344, −7.24003586999556749976702683465, −6.93152075927988653272943307354, −5.34585248989687557865770557740, −4.36487525814323683909402969779, −2.98980563497984996142581005561, −1.54111789333844679433075121655,
1.13939369424324292749274827464, 3.30235383509271494207009931264, 3.98863659188305576963984000261, 5.34337861913319977472289856398, 6.29612804906253895589668566744, 7.56188208330529609097374532968, 8.386615599368587577261994896533, 9.247481451479194087303523341253, 10.27607151729374315926599900131, 10.92047977419475519988018450614