| L(s) = 1 | + (−0.535 − 1.64i)3-s + (0.809 + 0.587i)5-s + (−0.386 + 1.19i)7-s + (−0.00499 + 0.00363i)9-s + (2.45 − 2.22i)11-s + (2.02 − 1.47i)13-s + (0.535 − 1.64i)15-s + (2.91 + 2.11i)17-s + (−2.18 − 6.71i)19-s + 2.17·21-s − 2.20·23-s + (0.309 + 0.951i)25-s + (−4.19 − 3.05i)27-s + (0.834 − 2.56i)29-s + (2.29 − 1.66i)31-s + ⋯ |
| L(s) = 1 | + (−0.309 − 0.952i)3-s + (0.361 + 0.262i)5-s + (−0.146 + 0.450i)7-s + (−0.00166 + 0.00121i)9-s + (0.740 − 0.671i)11-s + (0.562 − 0.408i)13-s + (0.138 − 0.425i)15-s + (0.707 + 0.513i)17-s + (−0.500 − 1.53i)19-s + 0.473·21-s − 0.460·23-s + (0.0618 + 0.190i)25-s + (−0.808 − 0.587i)27-s + (0.154 − 0.476i)29-s + (0.411 − 0.299i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.387 + 0.921i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.387 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.15929 - 0.769881i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.15929 - 0.769881i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (-2.45 + 2.22i)T \) |
| good | 3 | \( 1 + (0.535 + 1.64i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (0.386 - 1.19i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.02 + 1.47i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.91 - 2.11i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (2.18 + 6.71i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 2.20T + 23T^{2} \) |
| 29 | \( 1 + (-0.834 + 2.56i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.29 + 1.66i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.49 - 7.67i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (3.19 + 9.82i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 6.88T + 43T^{2} \) |
| 47 | \( 1 + (-0.493 - 1.51i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (1.43 - 1.04i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (1.35 - 4.15i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-6.74 - 4.89i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 5.43T + 67T^{2} \) |
| 71 | \( 1 + (-3.75 - 2.72i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.628 - 1.93i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (13.5 - 9.85i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-4.55 - 3.30i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 4.72T + 89T^{2} \) |
| 97 | \( 1 + (15.4 - 11.2i)T + (29.9 - 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11844526680782858224900945424, −10.11327099751453913813023551859, −9.048551997565837718961313503074, −8.210896593560664441827202349707, −7.03711770208319005879040545415, −6.30271262476703427865712411373, −5.59952360064470531957493834887, −3.94365626076080088534808097841, −2.54227896657092694746783781270, −1.05589850295381788949596022080,
1.64210465673872578692151492699, 3.65659104034544428698115938858, 4.39290199715100833502566944944, 5.47321951716511496229185875931, 6.49844408431845431702320100385, 7.61914410884214982885083406237, 8.801383179370513332244003266301, 9.793477829060645920194561136737, 10.16243027173268638562908214230, 11.13620813459775029205445701720