| L(s) = 1 | + (−0.320 − 0.987i)3-s + (0.809 + 0.587i)5-s + (−0.804 + 2.47i)7-s + (1.55 − 1.13i)9-s + (1.34 + 3.03i)11-s + (2.32 − 1.69i)13-s + (0.320 − 0.987i)15-s + (−0.655 − 0.476i)17-s + (1.59 + 4.89i)19-s + 2.70·21-s + 4.98·23-s + (0.309 + 0.951i)25-s + (−4.13 − 3.00i)27-s + (2.07 − 6.39i)29-s + (3.35 − 2.43i)31-s + ⋯ |
| L(s) = 1 | + (−0.185 − 0.569i)3-s + (0.361 + 0.262i)5-s + (−0.303 + 0.935i)7-s + (0.518 − 0.376i)9-s + (0.405 + 0.914i)11-s + (0.645 − 0.469i)13-s + (0.0828 − 0.254i)15-s + (−0.158 − 0.115i)17-s + (0.365 + 1.12i)19-s + 0.589·21-s + 1.03·23-s + (0.0618 + 0.190i)25-s + (−0.795 − 0.577i)27-s + (0.386 − 1.18i)29-s + (0.601 − 0.437i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0791i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0791i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.47306 + 0.0583728i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.47306 + 0.0583728i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (-1.34 - 3.03i)T \) |
| good | 3 | \( 1 + (0.320 + 0.987i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (0.804 - 2.47i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.32 + 1.69i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (0.655 + 0.476i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.59 - 4.89i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 4.98T + 23T^{2} \) |
| 29 | \( 1 + (-2.07 + 6.39i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.35 + 2.43i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.25 + 3.85i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.01 - 9.28i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 5.92T + 43T^{2} \) |
| 47 | \( 1 + (0.299 + 0.920i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (3.61 - 2.63i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.10 + 6.47i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.11 - 1.53i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 15.8T + 67T^{2} \) |
| 71 | \( 1 + (-1.14 - 0.830i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (4.06 - 12.4i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (4.60 - 3.34i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (6.44 + 4.68i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 14.5T + 89T^{2} \) |
| 97 | \( 1 + (-2.42 + 1.75i)T + (29.9 - 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33003325832233866756983873114, −10.00436385600161714936294983691, −9.530431371289354655895117763155, −8.373267522889257513674793719719, −7.32315743650999671862697900307, −6.38428728022148683592252574596, −5.72947300806673650158330341365, −4.27994993262678306268049142793, −2.84150416631865879019943857595, −1.47742410169180444556460482802,
1.20207517374725923348083962320, 3.21843196969202612812043662965, 4.31182423945343841111601969022, 5.21011812329894443270739739007, 6.50151777099592812187492996946, 7.25087612132914482128927006721, 8.661009795778583358664776464893, 9.291697995596693535245654741521, 10.41656800250899068556788620395, 10.84949737089870565443656371199