L(s) = 1 | + 3·3-s + 5-s + 7-s + 6·9-s − 11-s − 6·13-s + 3·15-s + 3·17-s − 5·19-s + 3·21-s − 2·23-s + 25-s + 9·27-s − 5·29-s + 5·31-s − 3·33-s + 35-s − 37-s − 18·39-s − 2·41-s + 12·43-s + 6·45-s − 2·47-s − 6·49-s + 9·51-s − 13·53-s − 55-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 0.447·5-s + 0.377·7-s + 2·9-s − 0.301·11-s − 1.66·13-s + 0.774·15-s + 0.727·17-s − 1.14·19-s + 0.654·21-s − 0.417·23-s + 1/5·25-s + 1.73·27-s − 0.928·29-s + 0.898·31-s − 0.522·33-s + 0.169·35-s − 0.164·37-s − 2.88·39-s − 0.312·41-s + 1.82·43-s + 0.894·45-s − 0.291·47-s − 6/7·49-s + 1.26·51-s − 1.78·53-s − 0.134·55-s + ⋯ |
Λ(s)=(=(440s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(440s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.491010532 |
L(21) |
≈ |
2.491010532 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 11 | 1+T |
good | 3 | 1−pT+pT2 |
| 7 | 1−T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1−3T+pT2 |
| 19 | 1+5T+pT2 |
| 23 | 1+2T+pT2 |
| 29 | 1+5T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1+T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1−12T+pT2 |
| 47 | 1+2T+pT2 |
| 53 | 1+13T+pT2 |
| 59 | 1−2T+pT2 |
| 61 | 1−T+pT2 |
| 67 | 1−16T+pT2 |
| 71 | 1−15T+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1−2T+pT2 |
| 83 | 1+14T+pT2 |
| 89 | 1−9T+pT2 |
| 97 | 1+16T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89766511338015233329150568707, −9.786029738762734281399683357155, −9.483006760033315076271652715999, −8.241837378038505346249898701453, −7.79929638968846771610897877135, −6.73950043879569860448501959504, −5.18236780553163224027614577017, −4.07821246743313595622649858247, −2.77079934605572561635474291231, −1.97350758509779452319901265349,
1.97350758509779452319901265349, 2.77079934605572561635474291231, 4.07821246743313595622649858247, 5.18236780553163224027614577017, 6.73950043879569860448501959504, 7.79929638968846771610897877135, 8.241837378038505346249898701453, 9.483006760033315076271652715999, 9.786029738762734281399683357155, 10.89766511338015233329150568707