Properties

Label 2-44-1.1-c3-0-2
Degree $2$
Conductor $44$
Sign $-1$
Analytic cond. $2.59608$
Root an. cond. $1.61123$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·3-s − 7·5-s − 26·7-s − 2·9-s − 11·11-s + 52·13-s + 35·15-s + 46·17-s − 96·19-s + 130·21-s + 27·23-s − 76·25-s + 145·27-s + 16·29-s − 293·31-s + 55·33-s + 182·35-s − 29·37-s − 260·39-s − 472·41-s − 110·43-s + 14·45-s − 224·47-s + 333·49-s − 230·51-s + 754·53-s + 77·55-s + ⋯
L(s)  = 1  − 0.962·3-s − 0.626·5-s − 1.40·7-s − 0.0740·9-s − 0.301·11-s + 1.10·13-s + 0.602·15-s + 0.656·17-s − 1.15·19-s + 1.35·21-s + 0.244·23-s − 0.607·25-s + 1.03·27-s + 0.102·29-s − 1.69·31-s + 0.290·33-s + 0.878·35-s − 0.128·37-s − 1.06·39-s − 1.79·41-s − 0.390·43-s + 0.0463·45-s − 0.695·47-s + 0.970·49-s − 0.631·51-s + 1.95·53-s + 0.188·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 44 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 44 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(44\)    =    \(2^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(2.59608\)
Root analytic conductor: \(1.61123\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 44,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + p T \)
good3 \( 1 + 5 T + p^{3} T^{2} \)
5 \( 1 + 7 T + p^{3} T^{2} \)
7 \( 1 + 26 T + p^{3} T^{2} \)
13 \( 1 - 4 p T + p^{3} T^{2} \)
17 \( 1 - 46 T + p^{3} T^{2} \)
19 \( 1 + 96 T + p^{3} T^{2} \)
23 \( 1 - 27 T + p^{3} T^{2} \)
29 \( 1 - 16 T + p^{3} T^{2} \)
31 \( 1 + 293 T + p^{3} T^{2} \)
37 \( 1 + 29 T + p^{3} T^{2} \)
41 \( 1 + 472 T + p^{3} T^{2} \)
43 \( 1 + 110 T + p^{3} T^{2} \)
47 \( 1 + 224 T + p^{3} T^{2} \)
53 \( 1 - 754 T + p^{3} T^{2} \)
59 \( 1 - 825 T + p^{3} T^{2} \)
61 \( 1 + 548 T + p^{3} T^{2} \)
67 \( 1 + 123 T + p^{3} T^{2} \)
71 \( 1 - 1001 T + p^{3} T^{2} \)
73 \( 1 + 1020 T + p^{3} T^{2} \)
79 \( 1 - 526 T + p^{3} T^{2} \)
83 \( 1 + 158 T + p^{3} T^{2} \)
89 \( 1 + 1217 T + p^{3} T^{2} \)
97 \( 1 + 263 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.11564239797692519708117432496, −13.37869599702103504396107526132, −12.39351030425872811801968553886, −11.28004623594834053748731134860, −10.19265231354656616959780975340, −8.576704438579042456112569388312, −6.79287207161281936191185534526, −5.66616212641346908893631684536, −3.60297344040032755627201064246, 0, 3.60297344040032755627201064246, 5.66616212641346908893631684536, 6.79287207161281936191185534526, 8.576704438579042456112569388312, 10.19265231354656616959780975340, 11.28004623594834053748731134860, 12.39351030425872811801968553886, 13.37869599702103504396107526132, 15.11564239797692519708117432496

Graph of the $Z$-function along the critical line