Properties

Label 2-4368-1.1-c1-0-64
Degree $2$
Conductor $4368$
Sign $-1$
Analytic cond. $34.8786$
Root an. cond. $5.90581$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2.54·5-s − 7-s + 9-s + 3.05·11-s + 13-s − 2.54·15-s + 1.34·17-s − 7.60·19-s + 21-s − 1.84·23-s + 1.50·25-s − 27-s − 5.60·29-s − 10.2·31-s − 3.05·33-s − 2.54·35-s − 9.20·37-s − 39-s − 8.04·41-s − 1.49·43-s + 2.54·45-s + 3.89·47-s + 49-s − 1.34·51-s + 0.502·53-s + 7.78·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.14·5-s − 0.377·7-s + 0.333·9-s + 0.920·11-s + 0.277·13-s − 0.658·15-s + 0.325·17-s − 1.74·19-s + 0.218·21-s − 0.384·23-s + 0.300·25-s − 0.192·27-s − 1.04·29-s − 1.84·31-s − 0.531·33-s − 0.431·35-s − 1.51·37-s − 0.160·39-s − 1.25·41-s − 0.228·43-s + 0.380·45-s + 0.567·47-s + 0.142·49-s − 0.187·51-s + 0.0690·53-s + 1.04·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4368\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(34.8786\)
Root analytic conductor: \(5.90581\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4368,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 - 2.54T + 5T^{2} \)
11 \( 1 - 3.05T + 11T^{2} \)
17 \( 1 - 1.34T + 17T^{2} \)
19 \( 1 + 7.60T + 19T^{2} \)
23 \( 1 + 1.84T + 23T^{2} \)
29 \( 1 + 5.60T + 29T^{2} \)
31 \( 1 + 10.2T + 31T^{2} \)
37 \( 1 + 9.20T + 37T^{2} \)
41 \( 1 + 8.04T + 41T^{2} \)
43 \( 1 + 1.49T + 43T^{2} \)
47 \( 1 - 3.89T + 47T^{2} \)
53 \( 1 - 0.502T + 53T^{2} \)
59 \( 1 - 4.28T + 59T^{2} \)
61 \( 1 + 0.683T + 61T^{2} \)
67 \( 1 - 7.68T + 67T^{2} \)
71 \( 1 - 14.2T + 71T^{2} \)
73 \( 1 + 12.0T + 73T^{2} \)
79 \( 1 + 4.91T + 79T^{2} \)
83 \( 1 - 1.20T + 83T^{2} \)
89 \( 1 - 13.7T + 89T^{2} \)
97 \( 1 + 7.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.054411048763686913432713752507, −6.83536090003168028478131340648, −6.65157371843533836011966944169, −5.69706293111898123488290133480, −5.37770946520709482754223670889, −4.13896765872572997948131892815, −3.54612224333131570226586081691, −2.11990469519213814216392058765, −1.57616668352890074599738179797, 0, 1.57616668352890074599738179797, 2.11990469519213814216392058765, 3.54612224333131570226586081691, 4.13896765872572997948131892815, 5.37770946520709482754223670889, 5.69706293111898123488290133480, 6.65157371843533836011966944169, 6.83536090003168028478131340648, 8.054411048763686913432713752507

Graph of the $Z$-function along the critical line