Properties

Label 2-4368-1.1-c1-0-15
Degree $2$
Conductor $4368$
Sign $1$
Analytic cond. $34.8786$
Root an. cond. $5.90581$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 2·11-s − 13-s − 2·17-s − 21-s + 8·23-s − 5·25-s − 27-s + 2·29-s + 4·31-s − 2·33-s + 6·37-s + 39-s − 8·41-s + 4·43-s − 6·47-s + 49-s + 2·51-s − 2·53-s + 2·59-s + 2·61-s + 63-s + 4·67-s − 8·69-s + 6·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.603·11-s − 0.277·13-s − 0.485·17-s − 0.218·21-s + 1.66·23-s − 25-s − 0.192·27-s + 0.371·29-s + 0.718·31-s − 0.348·33-s + 0.986·37-s + 0.160·39-s − 1.24·41-s + 0.609·43-s − 0.875·47-s + 1/7·49-s + 0.280·51-s − 0.274·53-s + 0.260·59-s + 0.256·61-s + 0.125·63-s + 0.488·67-s − 0.963·69-s + 0.712·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4368\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(34.8786\)
Root analytic conductor: \(5.90581\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4368,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.638854305\)
\(L(\frac12)\) \(\approx\) \(1.638854305\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 2 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 4 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.343703928733587903115238745948, −7.59360391319494946702443610315, −6.77952917202325686841418936376, −6.29734392191485410135265413331, −5.31563948412334827219518652163, −4.72806218691344613451679988179, −3.95149052690476985898155872116, −2.90633883207775464846897147288, −1.81705603263315543974257701492, −0.76208878248137137011420618317, 0.76208878248137137011420618317, 1.81705603263315543974257701492, 2.90633883207775464846897147288, 3.95149052690476985898155872116, 4.72806218691344613451679988179, 5.31563948412334827219518652163, 6.29734392191485410135265413331, 6.77952917202325686841418936376, 7.59360391319494946702443610315, 8.343703928733587903115238745948

Graph of the $Z$-function along the critical line