L(s) = 1 | + 2i·2-s + i·3-s − 2·4-s + (−2 − i)5-s − 2·6-s + 2i·7-s − 9-s + (2 − 4i)10-s − 3·11-s − 2i·12-s + 4i·13-s − 4·14-s + (1 − 2i)15-s − 4·16-s − 8i·17-s − 2i·18-s + ⋯ |
L(s) = 1 | + 1.41i·2-s + 0.577i·3-s − 4-s + (−0.894 − 0.447i)5-s − 0.816·6-s + 0.755i·7-s − 0.333·9-s + (0.632 − 1.26i)10-s − 0.904·11-s − 0.577i·12-s + 1.10i·13-s − 1.06·14-s + (0.258 − 0.516i)15-s − 16-s − 1.94i·17-s − 0.471i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.341380 - 0.552364i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.341380 - 0.552364i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 5 | \( 1 + (2 + i)T \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 - 2iT - 2T^{2} \) |
| 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 17 | \( 1 + 8iT - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + iT - 23T^{2} \) |
| 31 | \( 1 + 8T + 31T^{2} \) |
| 37 | \( 1 - 7iT - 37T^{2} \) |
| 41 | \( 1 - 7T + 41T^{2} \) |
| 43 | \( 1 - 9iT - 43T^{2} \) |
| 47 | \( 1 - 12iT - 47T^{2} \) |
| 53 | \( 1 - 9iT - 53T^{2} \) |
| 59 | \( 1 + 10T + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + 8iT - 67T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 + iT - 73T^{2} \) |
| 79 | \( 1 - 10T + 79T^{2} \) |
| 83 | \( 1 - 9iT - 83T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + 13iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.62422491778398075646995527520, −11.04128124430732654629150603020, −9.325507651786391090280165130585, −9.042466085810642644859319671068, −7.88580792568129009196890952763, −7.31296420995364703643267009715, −6.09357091609398355238453656500, −5.04750629219084679040435311984, −4.50958719877208497077065798184, −2.79056651523504246191001344162,
0.39523673841443701133943970878, 2.04924634891589312439919523686, 3.35942689347374746697520500704, 4.01667183787248106024227404560, 5.63813254884538974270120332872, 7.06648534952353791320988738791, 7.78564118361934078746050748569, 8.724077517634910441749649657607, 10.28587581686152419049399222484, 10.61062742762949293816870953995