L(s) = 1 | − 3·3-s + 4·4-s + 5·5-s + 9·9-s + 7·11-s − 12·12-s − 15·15-s + 16·16-s + 20·20-s − 41·23-s + 25·25-s − 27·27-s + 29·29-s − 21·33-s + 36·36-s + 71·37-s − 53·41-s + 59·43-s + 28·44-s + 45·45-s − 48·48-s + 49·49-s + 19·53-s + 35·55-s − 60·60-s + 64·64-s + 123·69-s + ⋯ |
L(s) = 1 | − 3-s + 4-s + 5-s + 9-s + 7/11·11-s − 12-s − 15-s + 16-s + 20-s − 1.78·23-s + 25-s − 27-s + 29-s − 0.636·33-s + 36-s + 1.91·37-s − 1.29·41-s + 1.37·43-s + 7/11·44-s + 45-s − 48-s + 49-s + 0.358·53-s + 7/11·55-s − 60-s + 64-s + 1.78·69-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)Λ(3−s)
Λ(s)=(=(435s/2ΓC(s+1)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
435
= 3⋅5⋅29
|
Sign: |
1
|
Analytic conductor: |
11.8528 |
Root analytic conductor: |
3.44280 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ435(434,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 435, ( :1), 1)
|
Particular Values
L(23) |
≈ |
2.012013371 |
L(21) |
≈ |
2.012013371 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+pT |
| 5 | 1−pT |
| 29 | 1−pT |
good | 2 | (1−pT)(1+pT) |
| 7 | (1−pT)(1+pT) |
| 11 | 1−7T+p2T2 |
| 13 | (1−pT)(1+pT) |
| 17 | (1−pT)(1+pT) |
| 19 | (1−pT)(1+pT) |
| 23 | 1+41T+p2T2 |
| 31 | (1−pT)(1+pT) |
| 37 | 1−71T+p2T2 |
| 41 | 1+53T+p2T2 |
| 43 | 1−59T+p2T2 |
| 47 | (1−pT)(1+pT) |
| 53 | 1−19T+p2T2 |
| 59 | (1−pT)(1+pT) |
| 61 | (1−pT)(1+pT) |
| 67 | (1−pT)(1+pT) |
| 71 | (1−pT)(1+pT) |
| 73 | 1+T+p2T2 |
| 79 | (1−pT)(1+pT) |
| 83 | 1−79T+p2T2 |
| 89 | 1+62T+p2T2 |
| 97 | 1+49T+p2T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.88965458956183607328413247932, −10.20844562524526650929498218394, −9.468201675371588189844156313502, −8.002005883923759507259649282931, −6.84859645840711605667824252059, −6.21015608819662411179756023276, −5.53425175704503221255828643468, −4.14738178195932642111416106758, −2.42269363291139208172532716134, −1.23528383259415825245829677177,
1.23528383259415825245829677177, 2.42269363291139208172532716134, 4.14738178195932642111416106758, 5.53425175704503221255828643468, 6.21015608819662411179756023276, 6.84859645840711605667824252059, 8.002005883923759507259649282931, 9.468201675371588189844156313502, 10.20844562524526650929498218394, 10.88965458956183607328413247932