Properties

Label 2-435-435.434-c2-0-59
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $11.8528$
Root an. cond. $3.44280$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 4·4-s + 5·5-s + 9·9-s + 7·11-s − 12·12-s − 15·15-s + 16·16-s + 20·20-s − 41·23-s + 25·25-s − 27·27-s + 29·29-s − 21·33-s + 36·36-s + 71·37-s − 53·41-s + 59·43-s + 28·44-s + 45·45-s − 48·48-s + 49·49-s + 19·53-s + 35·55-s − 60·60-s + 64·64-s + 123·69-s + ⋯
L(s)  = 1  − 3-s + 4-s + 5-s + 9-s + 7/11·11-s − 12-s − 15-s + 16-s + 20-s − 1.78·23-s + 25-s − 27-s + 29-s − 0.636·33-s + 36-s + 1.91·37-s − 1.29·41-s + 1.37·43-s + 7/11·44-s + 45-s − 48-s + 49-s + 0.358·53-s + 7/11·55-s − 60-s + 64-s + 1.78·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(11.8528\)
Root analytic conductor: \(3.44280\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: $\chi_{435} (434, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.012013371\)
\(L(\frac12)\) \(\approx\) \(2.012013371\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
5 \( 1 - p T \)
29 \( 1 - p T \)
good2 \( ( 1 - p T )( 1 + p T ) \)
7 \( ( 1 - p T )( 1 + p T ) \)
11 \( 1 - 7 T + p^{2} T^{2} \)
13 \( ( 1 - p T )( 1 + p T ) \)
17 \( ( 1 - p T )( 1 + p T ) \)
19 \( ( 1 - p T )( 1 + p T ) \)
23 \( 1 + 41 T + p^{2} T^{2} \)
31 \( ( 1 - p T )( 1 + p T ) \)
37 \( 1 - 71 T + p^{2} T^{2} \)
41 \( 1 + 53 T + p^{2} T^{2} \)
43 \( 1 - 59 T + p^{2} T^{2} \)
47 \( ( 1 - p T )( 1 + p T ) \)
53 \( 1 - 19 T + p^{2} T^{2} \)
59 \( ( 1 - p T )( 1 + p T ) \)
61 \( ( 1 - p T )( 1 + p T ) \)
67 \( ( 1 - p T )( 1 + p T ) \)
71 \( ( 1 - p T )( 1 + p T ) \)
73 \( 1 + T + p^{2} T^{2} \)
79 \( ( 1 - p T )( 1 + p T ) \)
83 \( 1 - 79 T + p^{2} T^{2} \)
89 \( 1 + 62 T + p^{2} T^{2} \)
97 \( 1 + 49 T + p^{2} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88965458956183607328413247932, −10.20844562524526650929498218394, −9.468201675371588189844156313502, −8.002005883923759507259649282931, −6.84859645840711605667824252059, −6.21015608819662411179756023276, −5.53425175704503221255828643468, −4.14738178195932642111416106758, −2.42269363291139208172532716134, −1.23528383259415825245829677177, 1.23528383259415825245829677177, 2.42269363291139208172532716134, 4.14738178195932642111416106758, 5.53425175704503221255828643468, 6.21015608819662411179756023276, 6.84859645840711605667824252059, 8.002005883923759507259649282931, 9.468201675371588189844156313502, 10.20844562524526650929498218394, 10.88965458956183607328413247932

Graph of the $Z$-function along the critical line