Properties

Label 2-435-1.1-c3-0-35
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·2-s − 3·3-s + 17·4-s + 5·5-s − 15·6-s + 16·7-s + 45·8-s + 9·9-s + 25·10-s − 44·11-s − 51·12-s + 78·13-s + 80·14-s − 15·15-s + 89·16-s + 18·17-s + 45·18-s − 28·19-s + 85·20-s − 48·21-s − 220·22-s + 184·23-s − 135·24-s + 25·25-s + 390·26-s − 27·27-s + 272·28-s + ⋯
L(s)  = 1  + 1.76·2-s − 0.577·3-s + 17/8·4-s + 0.447·5-s − 1.02·6-s + 0.863·7-s + 1.98·8-s + 1/3·9-s + 0.790·10-s − 1.20·11-s − 1.22·12-s + 1.66·13-s + 1.52·14-s − 0.258·15-s + 1.39·16-s + 0.256·17-s + 0.589·18-s − 0.338·19-s + 0.950·20-s − 0.498·21-s − 2.13·22-s + 1.66·23-s − 1.14·24-s + 1/5·25-s + 2.94·26-s − 0.192·27-s + 1.83·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.665892237\)
\(L(\frac12)\) \(\approx\) \(5.665892237\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
5 \( 1 - p T \)
29 \( 1 - p T \)
good2 \( 1 - 5 T + p^{3} T^{2} \)
7 \( 1 - 16 T + p^{3} T^{2} \)
11 \( 1 + 4 p T + p^{3} T^{2} \)
13 \( 1 - 6 p T + p^{3} T^{2} \)
17 \( 1 - 18 T + p^{3} T^{2} \)
19 \( 1 + 28 T + p^{3} T^{2} \)
23 \( 1 - 8 p T + p^{3} T^{2} \)
31 \( 1 + 224 T + p^{3} T^{2} \)
37 \( 1 - 254 T + p^{3} T^{2} \)
41 \( 1 + 78 T + p^{3} T^{2} \)
43 \( 1 + 260 T + p^{3} T^{2} \)
47 \( 1 - 312 T + p^{3} T^{2} \)
53 \( 1 - 574 T + p^{3} T^{2} \)
59 \( 1 - 180 T + p^{3} T^{2} \)
61 \( 1 + 10 p T + p^{3} T^{2} \)
67 \( 1 + 340 T + p^{3} T^{2} \)
71 \( 1 - 296 T + p^{3} T^{2} \)
73 \( 1 - 394 T + p^{3} T^{2} \)
79 \( 1 + 960 T + p^{3} T^{2} \)
83 \( 1 + 908 T + p^{3} T^{2} \)
89 \( 1 + 990 T + p^{3} T^{2} \)
97 \( 1 - 1234 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.01787903279084939908131226449, −10.47945589752012370275121669492, −8.792677476632474262964772608088, −7.58187155798137018964072446657, −6.54497752194227910628968504717, −5.59855281236004880130034921450, −5.11392487673221742565774919947, −4.03667569582335215129859164377, −2.80082205364819454527849557092, −1.44248852478742980714491400277, 1.44248852478742980714491400277, 2.80082205364819454527849557092, 4.03667569582335215129859164377, 5.11392487673221742565774919947, 5.59855281236004880130034921450, 6.54497752194227910628968504717, 7.58187155798137018964072446657, 8.792677476632474262964772608088, 10.47945589752012370275121669492, 11.01787903279084939908131226449

Graph of the $Z$-function along the critical line