Properties

Label 2-435-1.1-c3-0-20
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.35·2-s + 3·3-s − 2.45·4-s − 5·5-s + 7.06·6-s − 3.94·7-s − 24.6·8-s + 9·9-s − 11.7·10-s + 42.8·11-s − 7.36·12-s + 36.4·13-s − 9.28·14-s − 15·15-s − 38.3·16-s + 17.8·17-s + 21.1·18-s + 84.6·19-s + 12.2·20-s − 11.8·21-s + 100.·22-s + 93.9·23-s − 73.8·24-s + 25·25-s + 85.7·26-s + 27·27-s + 9.68·28-s + ⋯
L(s)  = 1  + 0.832·2-s + 0.577·3-s − 0.306·4-s − 0.447·5-s + 0.480·6-s − 0.212·7-s − 1.08·8-s + 0.333·9-s − 0.372·10-s + 1.17·11-s − 0.177·12-s + 0.777·13-s − 0.177·14-s − 0.258·15-s − 0.598·16-s + 0.254·17-s + 0.277·18-s + 1.02·19-s + 0.137·20-s − 0.122·21-s + 0.977·22-s + 0.851·23-s − 0.628·24-s + 0.200·25-s + 0.647·26-s + 0.192·27-s + 0.0653·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.077837311\)
\(L(\frac12)\) \(\approx\) \(3.077837311\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
5 \( 1 + 5T \)
29 \( 1 - 29T \)
good2 \( 1 - 2.35T + 8T^{2} \)
7 \( 1 + 3.94T + 343T^{2} \)
11 \( 1 - 42.8T + 1.33e3T^{2} \)
13 \( 1 - 36.4T + 2.19e3T^{2} \)
17 \( 1 - 17.8T + 4.91e3T^{2} \)
19 \( 1 - 84.6T + 6.85e3T^{2} \)
23 \( 1 - 93.9T + 1.21e4T^{2} \)
31 \( 1 - 122.T + 2.97e4T^{2} \)
37 \( 1 + 61.2T + 5.06e4T^{2} \)
41 \( 1 - 13.8T + 6.89e4T^{2} \)
43 \( 1 - 397.T + 7.95e4T^{2} \)
47 \( 1 - 235.T + 1.03e5T^{2} \)
53 \( 1 + 50.4T + 1.48e5T^{2} \)
59 \( 1 + 476.T + 2.05e5T^{2} \)
61 \( 1 + 75.4T + 2.26e5T^{2} \)
67 \( 1 + 698.T + 3.00e5T^{2} \)
71 \( 1 - 44.6T + 3.57e5T^{2} \)
73 \( 1 - 669.T + 3.89e5T^{2} \)
79 \( 1 - 269.T + 4.93e5T^{2} \)
83 \( 1 - 869.T + 5.71e5T^{2} \)
89 \( 1 + 9.85T + 7.04e5T^{2} \)
97 \( 1 + 1.52e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89541041851310288381176016567, −9.519660079872534109945597468954, −9.028331449204441690278568412083, −8.045327801225051610963463802897, −6.86991885796750342452935594999, −5.89483163632661521977696981583, −4.66717462332638380868509046146, −3.76312476464863904994612130020, −3.01970481541496632512957154467, −1.04091194272243877728865867311, 1.04091194272243877728865867311, 3.01970481541496632512957154467, 3.76312476464863904994612130020, 4.66717462332638380868509046146, 5.89483163632661521977696981583, 6.86991885796750342452935594999, 8.045327801225051610963463802897, 9.028331449204441690278568412083, 9.519660079872534109945597468954, 10.89541041851310288381176016567

Graph of the $Z$-function along the critical line