Properties

Label 2-435-1.1-c3-0-12
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s − 4·4-s + 5·5-s + 6·6-s + 29·7-s + 24·8-s + 9·9-s − 10·10-s − 15·11-s + 12·12-s + 3·13-s − 58·14-s − 15·15-s − 16·16-s + 121·17-s − 18·18-s − 40·19-s − 20·20-s − 87·21-s + 30·22-s − 116·23-s − 72·24-s + 25·25-s − 6·26-s − 27·27-s − 116·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s + 1.56·7-s + 1.06·8-s + 1/3·9-s − 0.316·10-s − 0.411·11-s + 0.288·12-s + 0.0640·13-s − 1.10·14-s − 0.258·15-s − 1/4·16-s + 1.72·17-s − 0.235·18-s − 0.482·19-s − 0.223·20-s − 0.904·21-s + 0.290·22-s − 1.05·23-s − 0.612·24-s + 1/5·25-s − 0.0452·26-s − 0.192·27-s − 0.782·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.208537042\)
\(L(\frac12)\) \(\approx\) \(1.208537042\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
5 \( 1 - p T \)
29 \( 1 - p T \)
good2 \( 1 + p T + p^{3} T^{2} \)
7 \( 1 - 29 T + p^{3} T^{2} \)
11 \( 1 + 15 T + p^{3} T^{2} \)
13 \( 1 - 3 T + p^{3} T^{2} \)
17 \( 1 - 121 T + p^{3} T^{2} \)
19 \( 1 + 40 T + p^{3} T^{2} \)
23 \( 1 + 116 T + p^{3} T^{2} \)
31 \( 1 + 116 T + p^{3} T^{2} \)
37 \( 1 - 36 T + p^{3} T^{2} \)
41 \( 1 + 170 T + p^{3} T^{2} \)
43 \( 1 - 230 T + p^{3} T^{2} \)
47 \( 1 - 231 T + p^{3} T^{2} \)
53 \( 1 - 456 T + p^{3} T^{2} \)
59 \( 1 - 576 T + p^{3} T^{2} \)
61 \( 1 - 342 T + p^{3} T^{2} \)
67 \( 1 + 269 T + p^{3} T^{2} \)
71 \( 1 - 302 T + p^{3} T^{2} \)
73 \( 1 + 372 T + p^{3} T^{2} \)
79 \( 1 + 348 T + p^{3} T^{2} \)
83 \( 1 + 512 T + p^{3} T^{2} \)
89 \( 1 - 1525 T + p^{3} T^{2} \)
97 \( 1 + 560 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46015328944804877531754005646, −10.04326320608550751741039868651, −8.840299652756439931437108701791, −8.033446387775051280773096673024, −7.37465610209393064823993503875, −5.73572656962376573407477636334, −5.09728818457982808941375184185, −4.03776032702893288415155688609, −1.93210951186117854524521044168, −0.861620307838800919623260016528, 0.861620307838800919623260016528, 1.93210951186117854524521044168, 4.03776032702893288415155688609, 5.09728818457982808941375184185, 5.73572656962376573407477636334, 7.37465610209393064823993503875, 8.033446387775051280773096673024, 8.840299652756439931437108701791, 10.04326320608550751741039868651, 10.46015328944804877531754005646

Graph of the $Z$-function along the critical line