Properties

Label 2-435-1.1-c1-0-6
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $3.47349$
Root an. cond. $1.86373$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.79·2-s + 3-s + 5.79·4-s + 5-s − 2.79·6-s + 7-s − 10.5·8-s + 9-s − 2.79·10-s + 5·11-s + 5.79·12-s + 4.58·13-s − 2.79·14-s + 15-s + 17.9·16-s − 3·17-s − 2.79·18-s − 5.58·19-s + 5.79·20-s + 21-s − 13.9·22-s − 4·23-s − 10.5·24-s + 25-s − 12.7·26-s + 27-s + 5.79·28-s + ⋯
L(s)  = 1  − 1.97·2-s + 0.577·3-s + 2.89·4-s + 0.447·5-s − 1.13·6-s + 0.377·7-s − 3.74·8-s + 0.333·9-s − 0.882·10-s + 1.50·11-s + 1.67·12-s + 1.27·13-s − 0.746·14-s + 0.258·15-s + 4.48·16-s − 0.727·17-s − 0.657·18-s − 1.28·19-s + 1.29·20-s + 0.218·21-s − 2.97·22-s − 0.834·23-s − 2.16·24-s + 0.200·25-s − 2.50·26-s + 0.192·27-s + 1.09·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(3.47349\)
Root analytic conductor: \(1.86373\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8899734799\)
\(L(\frac12)\) \(\approx\) \(0.8899734799\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
29 \( 1 - T \)
good2 \( 1 + 2.79T + 2T^{2} \)
7 \( 1 - T + 7T^{2} \)
11 \( 1 - 5T + 11T^{2} \)
13 \( 1 - 4.58T + 13T^{2} \)
17 \( 1 + 3T + 17T^{2} \)
19 \( 1 + 5.58T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 4T + 37T^{2} \)
41 \( 1 - 9.16T + 41T^{2} \)
43 \( 1 + 0.417T + 43T^{2} \)
47 \( 1 - 1.41T + 47T^{2} \)
53 \( 1 - 9.58T + 53T^{2} \)
59 \( 1 - 1.58T + 59T^{2} \)
61 \( 1 + 14.7T + 61T^{2} \)
67 \( 1 - 14.1T + 67T^{2} \)
71 \( 1 + 0.417T + 71T^{2} \)
73 \( 1 - 4T + 73T^{2} \)
79 \( 1 + 1.58T + 79T^{2} \)
83 \( 1 + 2.41T + 83T^{2} \)
89 \( 1 - 10.5T + 89T^{2} \)
97 \( 1 - 2.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.86001620996616501621968960803, −10.04687628451247281168330568363, −9.030539804290225604796074870475, −8.734331902902214329755345371240, −7.86646895476236338825536403591, −6.61450362517407997973927150168, −6.20655110506864942808847846597, −3.86913648466154764146989572946, −2.29058204194812420170594646686, −1.30728726876964145531883898151, 1.30728726876964145531883898151, 2.29058204194812420170594646686, 3.86913648466154764146989572946, 6.20655110506864942808847846597, 6.61450362517407997973927150168, 7.86646895476236338825536403591, 8.734331902902214329755345371240, 9.030539804290225604796074870475, 10.04687628451247281168330568363, 10.86001620996616501621968960803

Graph of the $Z$-function along the critical line