Properties

Label 2-435-1.1-c1-0-4
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $3.47349$
Root an. cond. $1.86373$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.772·2-s − 3-s − 1.40·4-s + 5-s − 0.772·6-s + 2.17·7-s − 2.62·8-s + 9-s + 0.772·10-s + 3·11-s + 1.40·12-s − 0.629·13-s + 1.68·14-s − 15-s + 0.772·16-s + 4.17·17-s + 0.772·18-s + 4.80·19-s − 1.40·20-s − 2.17·21-s + 2.31·22-s + 2.08·23-s + 2.62·24-s + 25-s − 0.486·26-s − 27-s − 3.05·28-s + ⋯
L(s)  = 1  + 0.546·2-s − 0.577·3-s − 0.701·4-s + 0.447·5-s − 0.315·6-s + 0.822·7-s − 0.929·8-s + 0.333·9-s + 0.244·10-s + 0.904·11-s + 0.404·12-s − 0.174·13-s + 0.449·14-s − 0.258·15-s + 0.193·16-s + 1.01·17-s + 0.182·18-s + 1.10·19-s − 0.313·20-s − 0.474·21-s + 0.494·22-s + 0.434·23-s + 0.536·24-s + 0.200·25-s − 0.0954·26-s − 0.192·27-s − 0.576·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(3.47349\)
Root analytic conductor: \(1.86373\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.539770313\)
\(L(\frac12)\) \(\approx\) \(1.539770313\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
29 \( 1 + T \)
good2 \( 1 - 0.772T + 2T^{2} \)
7 \( 1 - 2.17T + 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 + 0.629T + 13T^{2} \)
17 \( 1 - 4.17T + 17T^{2} \)
19 \( 1 - 4.80T + 19T^{2} \)
23 \( 1 - 2.08T + 23T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 6.08T + 37T^{2} \)
41 \( 1 - 0.824T + 41T^{2} \)
43 \( 1 + 8.72T + 43T^{2} \)
47 \( 1 + 8.98T + 47T^{2} \)
53 \( 1 - 6.88T + 53T^{2} \)
59 \( 1 - 6.45T + 59T^{2} \)
61 \( 1 + 2.80T + 61T^{2} \)
67 \( 1 + 11.0T + 67T^{2} \)
71 \( 1 - 2.63T + 71T^{2} \)
73 \( 1 + 14.7T + 73T^{2} \)
79 \( 1 + 12.0T + 79T^{2} \)
83 \( 1 + 7.62T + 83T^{2} \)
89 \( 1 - 17.8T + 89T^{2} \)
97 \( 1 - 0.538T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.50639152931305203063062394402, −10.14111263568956731782780792449, −9.477996869809564280760342564614, −8.480133861513070054844477896308, −7.35637204840578365156498073296, −6.10972133769248522691221431287, −5.29995804282330969784902939486, −4.53167440669236326129400406824, −3.29437045818504435624558241890, −1.27925173991626807871074967574, 1.27925173991626807871074967574, 3.29437045818504435624558241890, 4.53167440669236326129400406824, 5.29995804282330969784902939486, 6.10972133769248522691221431287, 7.35637204840578365156498073296, 8.480133861513070054844477896308, 9.477996869809564280760342564614, 10.14111263568956731782780792449, 11.50639152931305203063062394402

Graph of the $Z$-function along the critical line