Properties

Label 2-435-1.1-c1-0-3
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $3.47349$
Root an. cond. $1.86373$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s + 5-s − 6-s − 4·7-s + 3·8-s + 9-s − 10-s − 12-s + 6·13-s + 4·14-s + 15-s − 16-s + 2·17-s − 18-s + 8·19-s − 20-s − 4·21-s − 4·23-s + 3·24-s + 25-s − 6·26-s + 27-s + 4·28-s + 29-s − 30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s − 0.408·6-s − 1.51·7-s + 1.06·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s + 1.66·13-s + 1.06·14-s + 0.258·15-s − 1/4·16-s + 0.485·17-s − 0.235·18-s + 1.83·19-s − 0.223·20-s − 0.872·21-s − 0.834·23-s + 0.612·24-s + 1/5·25-s − 1.17·26-s + 0.192·27-s + 0.755·28-s + 0.185·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(3.47349\)
Root analytic conductor: \(1.86373\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.045386567\)
\(L(\frac12)\) \(\approx\) \(1.045386567\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
29 \( 1 - T \)
good2 \( 1 + T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.75800573511653481896464129178, −9.760218247853831386687609022861, −9.557503701967675291305833337136, −8.575570814640394375498951194613, −7.72786156373545594249219051552, −6.55543097381440476299846924590, −5.58153071011565013738124935193, −3.97599829860772318843336935157, −3.06133580739474070245483773115, −1.13897079254288435205597284658, 1.13897079254288435205597284658, 3.06133580739474070245483773115, 3.97599829860772318843336935157, 5.58153071011565013738124935193, 6.55543097381440476299846924590, 7.72786156373545594249219051552, 8.575570814640394375498951194613, 9.557503701967675291305833337136, 9.760218247853831386687609022861, 10.75800573511653481896464129178

Graph of the $Z$-function along the critical line