Properties

Label 2-435-1.1-c1-0-10
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $3.47349$
Root an. cond. $1.86373$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 5-s + 6-s + 4·7-s − 3·8-s + 9-s + 10-s − 4·11-s − 12-s + 6·13-s + 4·14-s + 15-s − 16-s + 6·17-s + 18-s − 4·19-s − 20-s + 4·21-s − 4·22-s − 4·23-s − 3·24-s + 25-s + 6·26-s + 27-s − 4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s + 1.51·7-s − 1.06·8-s + 1/3·9-s + 0.316·10-s − 1.20·11-s − 0.288·12-s + 1.66·13-s + 1.06·14-s + 0.258·15-s − 1/4·16-s + 1.45·17-s + 0.235·18-s − 0.917·19-s − 0.223·20-s + 0.872·21-s − 0.852·22-s − 0.834·23-s − 0.612·24-s + 1/5·25-s + 1.17·26-s + 0.192·27-s − 0.755·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(3.47349\)
Root analytic conductor: \(1.86373\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.385999425\)
\(L(\frac12)\) \(\approx\) \(2.385999425\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
29 \( 1 - T \)
good2 \( 1 - T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.08632533794567075438500598760, −10.36706411410877680974948279833, −9.180815844797497435996582347463, −8.285142698379180989401958892533, −7.82152461814686983756055018114, −6.04599499864174651869297996238, −5.30506594738975870887892595526, −4.31801287744868728937060903572, −3.22174431616232965676904645612, −1.68581285052697885373760198065, 1.68581285052697885373760198065, 3.22174431616232965676904645612, 4.31801287744868728937060903572, 5.30506594738975870887892595526, 6.04599499864174651869297996238, 7.82152461814686983756055018114, 8.285142698379180989401958892533, 9.180815844797497435996582347463, 10.36706411410877680974948279833, 11.08632533794567075438500598760

Graph of the $Z$-function along the critical line