Properties

Label 2-4334-1.1-c1-0-93
Degree $2$
Conductor $4334$
Sign $-1$
Analytic cond. $34.6071$
Root an. cond. $5.88278$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2.47·3-s + 4-s + 1.17·5-s + 2.47·6-s + 0.539·7-s − 8-s + 3.13·9-s − 1.17·10-s + 11-s − 2.47·12-s + 3.77·13-s − 0.539·14-s − 2.90·15-s + 16-s − 5.84·17-s − 3.13·18-s − 0.884·19-s + 1.17·20-s − 1.33·21-s − 22-s + 5.41·23-s + 2.47·24-s − 3.62·25-s − 3.77·26-s − 0.339·27-s + 0.539·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.43·3-s + 0.5·4-s + 0.525·5-s + 1.01·6-s + 0.204·7-s − 0.353·8-s + 1.04·9-s − 0.371·10-s + 0.301·11-s − 0.715·12-s + 1.04·13-s − 0.144·14-s − 0.751·15-s + 0.250·16-s − 1.41·17-s − 0.739·18-s − 0.202·19-s + 0.262·20-s − 0.291·21-s − 0.213·22-s + 1.12·23-s + 0.505·24-s − 0.724·25-s − 0.739·26-s − 0.0653·27-s + 0.102·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4334 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4334 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4334\)    =    \(2 \cdot 11 \cdot 197\)
Sign: $-1$
Analytic conductor: \(34.6071\)
Root analytic conductor: \(5.88278\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4334,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
11 \( 1 - T \)
197 \( 1 - T \)
good3 \( 1 + 2.47T + 3T^{2} \)
5 \( 1 - 1.17T + 5T^{2} \)
7 \( 1 - 0.539T + 7T^{2} \)
13 \( 1 - 3.77T + 13T^{2} \)
17 \( 1 + 5.84T + 17T^{2} \)
19 \( 1 + 0.884T + 19T^{2} \)
23 \( 1 - 5.41T + 23T^{2} \)
29 \( 1 + 1.87T + 29T^{2} \)
31 \( 1 - 1.14T + 31T^{2} \)
37 \( 1 - 2.52T + 37T^{2} \)
41 \( 1 + 1.15T + 41T^{2} \)
43 \( 1 + 10.8T + 43T^{2} \)
47 \( 1 - 0.607T + 47T^{2} \)
53 \( 1 - 2.28T + 53T^{2} \)
59 \( 1 + 7.45T + 59T^{2} \)
61 \( 1 + 8.34T + 61T^{2} \)
67 \( 1 + 14.3T + 67T^{2} \)
71 \( 1 + 6.18T + 71T^{2} \)
73 \( 1 - 12.6T + 73T^{2} \)
79 \( 1 - 15.3T + 79T^{2} \)
83 \( 1 - 13.5T + 83T^{2} \)
89 \( 1 + 4.22T + 89T^{2} \)
97 \( 1 + 14.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.060546975919410559054013160095, −7.09257682560248279103356407366, −6.31233577604533318957886697887, −6.17998763654703403985991183001, −5.14972158723694171969028564948, −4.49680992254437592564757131555, −3.33504280592832394069404712920, −2.02250583449842028343560963001, −1.19069984244191209177027219927, 0, 1.19069984244191209177027219927, 2.02250583449842028343560963001, 3.33504280592832394069404712920, 4.49680992254437592564757131555, 5.14972158723694171969028564948, 6.17998763654703403985991183001, 6.31233577604533318957886697887, 7.09257682560248279103356407366, 8.060546975919410559054013160095

Graph of the $Z$-function along the critical line