Properties

Label 2-4334-1.1-c1-0-66
Degree $2$
Conductor $4334$
Sign $-1$
Analytic cond. $34.6071$
Root an. cond. $5.88278$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 0.167·3-s + 4-s − 1.86·5-s + 0.167·6-s − 4.61·7-s − 8-s − 2.97·9-s + 1.86·10-s + 11-s − 0.167·12-s + 0.766·13-s + 4.61·14-s + 0.310·15-s + 16-s + 3.09·17-s + 2.97·18-s + 2.62·19-s − 1.86·20-s + 0.771·21-s − 22-s + 7.16·23-s + 0.167·24-s − 1.53·25-s − 0.766·26-s + 0.997·27-s − 4.61·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.0964·3-s + 0.5·4-s − 0.832·5-s + 0.0682·6-s − 1.74·7-s − 0.353·8-s − 0.990·9-s + 0.588·10-s + 0.301·11-s − 0.0482·12-s + 0.212·13-s + 1.23·14-s + 0.0802·15-s + 0.250·16-s + 0.750·17-s + 0.700·18-s + 0.602·19-s − 0.416·20-s + 0.168·21-s − 0.213·22-s + 1.49·23-s + 0.0341·24-s − 0.307·25-s − 0.150·26-s + 0.192·27-s − 0.872·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4334 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4334 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4334\)    =    \(2 \cdot 11 \cdot 197\)
Sign: $-1$
Analytic conductor: \(34.6071\)
Root analytic conductor: \(5.88278\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4334,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
11 \( 1 - T \)
197 \( 1 - T \)
good3 \( 1 + 0.167T + 3T^{2} \)
5 \( 1 + 1.86T + 5T^{2} \)
7 \( 1 + 4.61T + 7T^{2} \)
13 \( 1 - 0.766T + 13T^{2} \)
17 \( 1 - 3.09T + 17T^{2} \)
19 \( 1 - 2.62T + 19T^{2} \)
23 \( 1 - 7.16T + 23T^{2} \)
29 \( 1 + 2.94T + 29T^{2} \)
31 \( 1 + 0.0691T + 31T^{2} \)
37 \( 1 - 6.85T + 37T^{2} \)
41 \( 1 - 0.348T + 41T^{2} \)
43 \( 1 + 2.62T + 43T^{2} \)
47 \( 1 - 0.00342T + 47T^{2} \)
53 \( 1 + 8.61T + 53T^{2} \)
59 \( 1 - 4.25T + 59T^{2} \)
61 \( 1 - 14.7T + 61T^{2} \)
67 \( 1 + 5.35T + 67T^{2} \)
71 \( 1 + 4.54T + 71T^{2} \)
73 \( 1 - 12.4T + 73T^{2} \)
79 \( 1 + 2.65T + 79T^{2} \)
83 \( 1 - 0.0519T + 83T^{2} \)
89 \( 1 + 16.0T + 89T^{2} \)
97 \( 1 + 1.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.050934707453285958760188075383, −7.31725204794549322123267687982, −6.66920943568344859303677434379, −5.98417912543008910271923275968, −5.25232246550564230619511300856, −3.87222840939719657878861972366, −3.27238980574656494123475940015, −2.66013942677836885610899161573, −0.977580836695719589652754714221, 0, 0.977580836695719589652754714221, 2.66013942677836885610899161573, 3.27238980574656494123475940015, 3.87222840939719657878861972366, 5.25232246550564230619511300856, 5.98417912543008910271923275968, 6.66920943568344859303677434379, 7.31725204794549322123267687982, 8.050934707453285958760188075383

Graph of the $Z$-function along the critical line