Properties

Label 2-4334-1.1-c1-0-63
Degree $2$
Conductor $4334$
Sign $-1$
Analytic cond. $34.6071$
Root an. cond. $5.88278$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3.16·3-s + 4-s − 1.61·5-s + 3.16·6-s + 0.0905·7-s − 8-s + 6.99·9-s + 1.61·10-s + 11-s − 3.16·12-s + 0.481·13-s − 0.0905·14-s + 5.09·15-s + 16-s + 0.419·17-s − 6.99·18-s − 1.64·19-s − 1.61·20-s − 0.286·21-s − 22-s + 0.827·23-s + 3.16·24-s − 2.40·25-s − 0.481·26-s − 12.6·27-s + 0.0905·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.82·3-s + 0.5·4-s − 0.720·5-s + 1.29·6-s + 0.0342·7-s − 0.353·8-s + 2.33·9-s + 0.509·10-s + 0.301·11-s − 0.912·12-s + 0.133·13-s − 0.0241·14-s + 1.31·15-s + 0.250·16-s + 0.101·17-s − 1.64·18-s − 0.378·19-s − 0.360·20-s − 0.0624·21-s − 0.213·22-s + 0.172·23-s + 0.645·24-s − 0.481·25-s − 0.0944·26-s − 2.43·27-s + 0.0171·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4334 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4334 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4334\)    =    \(2 \cdot 11 \cdot 197\)
Sign: $-1$
Analytic conductor: \(34.6071\)
Root analytic conductor: \(5.88278\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4334,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
11 \( 1 - T \)
197 \( 1 - T \)
good3 \( 1 + 3.16T + 3T^{2} \)
5 \( 1 + 1.61T + 5T^{2} \)
7 \( 1 - 0.0905T + 7T^{2} \)
13 \( 1 - 0.481T + 13T^{2} \)
17 \( 1 - 0.419T + 17T^{2} \)
19 \( 1 + 1.64T + 19T^{2} \)
23 \( 1 - 0.827T + 23T^{2} \)
29 \( 1 + 0.561T + 29T^{2} \)
31 \( 1 + 8.42T + 31T^{2} \)
37 \( 1 - 1.21T + 37T^{2} \)
41 \( 1 + 7.62T + 41T^{2} \)
43 \( 1 - 7.99T + 43T^{2} \)
47 \( 1 - 12.0T + 47T^{2} \)
53 \( 1 - 1.16T + 53T^{2} \)
59 \( 1 - 6.82T + 59T^{2} \)
61 \( 1 + 2.12T + 61T^{2} \)
67 \( 1 - 8.17T + 67T^{2} \)
71 \( 1 - 3.26T + 71T^{2} \)
73 \( 1 + 0.788T + 73T^{2} \)
79 \( 1 - 11.1T + 79T^{2} \)
83 \( 1 + 7.46T + 83T^{2} \)
89 \( 1 + 8.38T + 89T^{2} \)
97 \( 1 - 14.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80924416397354006162689709065, −7.22239383844730819397967921153, −6.61262974740256547991933927899, −5.85413343750551943180644263665, −5.25733838607197635823330497328, −4.29236830438444730645406278991, −3.61715714674026910314372821301, −2.02145526524805759381442342324, −0.939758677473102902484201776499, 0, 0.939758677473102902484201776499, 2.02145526524805759381442342324, 3.61715714674026910314372821301, 4.29236830438444730645406278991, 5.25733838607197635823330497328, 5.85413343750551943180644263665, 6.61262974740256547991933927899, 7.22239383844730819397967921153, 7.80924416397354006162689709065

Graph of the $Z$-function along the critical line