Properties

Label 2-4334-1.1-c1-0-131
Degree $2$
Conductor $4334$
Sign $-1$
Analytic cond. $34.6071$
Root an. cond. $5.88278$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 0.995·3-s + 4-s + 2.56·5-s − 0.995·6-s − 3.12·7-s − 8-s − 2.00·9-s − 2.56·10-s + 11-s + 0.995·12-s + 1.90·13-s + 3.12·14-s + 2.54·15-s + 16-s + 3.95·17-s + 2.00·18-s − 0.294·19-s + 2.56·20-s − 3.11·21-s − 22-s − 4.99·23-s − 0.995·24-s + 1.56·25-s − 1.90·26-s − 4.98·27-s − 3.12·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.574·3-s + 0.5·4-s + 1.14·5-s − 0.406·6-s − 1.18·7-s − 0.353·8-s − 0.669·9-s − 0.810·10-s + 0.301·11-s + 0.287·12-s + 0.528·13-s + 0.836·14-s + 0.658·15-s + 0.250·16-s + 0.959·17-s + 0.473·18-s − 0.0675·19-s + 0.573·20-s − 0.679·21-s − 0.213·22-s − 1.04·23-s − 0.203·24-s + 0.313·25-s − 0.373·26-s − 0.959·27-s − 0.591·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4334 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4334 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4334\)    =    \(2 \cdot 11 \cdot 197\)
Sign: $-1$
Analytic conductor: \(34.6071\)
Root analytic conductor: \(5.88278\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4334,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
11 \( 1 - T \)
197 \( 1 - T \)
good3 \( 1 - 0.995T + 3T^{2} \)
5 \( 1 - 2.56T + 5T^{2} \)
7 \( 1 + 3.12T + 7T^{2} \)
13 \( 1 - 1.90T + 13T^{2} \)
17 \( 1 - 3.95T + 17T^{2} \)
19 \( 1 + 0.294T + 19T^{2} \)
23 \( 1 + 4.99T + 23T^{2} \)
29 \( 1 + 6.71T + 29T^{2} \)
31 \( 1 + 2.58T + 31T^{2} \)
37 \( 1 + 8.71T + 37T^{2} \)
41 \( 1 + 2.08T + 41T^{2} \)
43 \( 1 - 3.12T + 43T^{2} \)
47 \( 1 - 5.20T + 47T^{2} \)
53 \( 1 + 3.14T + 53T^{2} \)
59 \( 1 + 6.61T + 59T^{2} \)
61 \( 1 - 6.08T + 61T^{2} \)
67 \( 1 - 1.50T + 67T^{2} \)
71 \( 1 + 3.24T + 71T^{2} \)
73 \( 1 + 10.5T + 73T^{2} \)
79 \( 1 - 5.87T + 79T^{2} \)
83 \( 1 - 11.7T + 83T^{2} \)
89 \( 1 + 8.04T + 89T^{2} \)
97 \( 1 + 16.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.154609365512655317371051353920, −7.37916012760467014404221994426, −6.52211587471098224025950824985, −5.87141546224217172896902864415, −5.48953056727595857270741468852, −3.80895073731064654073166756420, −3.24652041363380930286754716234, −2.32729972134856006642605988079, −1.53180774462012345684831564331, 0, 1.53180774462012345684831564331, 2.32729972134856006642605988079, 3.24652041363380930286754716234, 3.80895073731064654073166756420, 5.48953056727595857270741468852, 5.87141546224217172896902864415, 6.52211587471098224025950824985, 7.37916012760467014404221994426, 8.154609365512655317371051353920

Graph of the $Z$-function along the critical line