Properties

Label 2-4334-1.1-c1-0-118
Degree $2$
Conductor $4334$
Sign $-1$
Analytic cond. $34.6071$
Root an. cond. $5.88278$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.19·3-s + 4-s − 2.35·5-s − 2.19·6-s − 0.565·7-s − 8-s + 1.79·9-s + 2.35·10-s + 11-s + 2.19·12-s − 4.37·13-s + 0.565·14-s − 5.16·15-s + 16-s + 5.62·17-s − 1.79·18-s − 1.21·19-s − 2.35·20-s − 1.23·21-s − 22-s − 3.60·23-s − 2.19·24-s + 0.554·25-s + 4.37·26-s − 2.63·27-s − 0.565·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.26·3-s + 0.5·4-s − 1.05·5-s − 0.894·6-s − 0.213·7-s − 0.353·8-s + 0.599·9-s + 0.745·10-s + 0.301·11-s + 0.632·12-s − 1.21·13-s + 0.151·14-s − 1.33·15-s + 0.250·16-s + 1.36·17-s − 0.423·18-s − 0.279·19-s − 0.526·20-s − 0.270·21-s − 0.213·22-s − 0.751·23-s − 0.447·24-s + 0.110·25-s + 0.858·26-s − 0.506·27-s − 0.106·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4334 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4334 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4334\)    =    \(2 \cdot 11 \cdot 197\)
Sign: $-1$
Analytic conductor: \(34.6071\)
Root analytic conductor: \(5.88278\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4334,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
11 \( 1 - T \)
197 \( 1 - T \)
good3 \( 1 - 2.19T + 3T^{2} \)
5 \( 1 + 2.35T + 5T^{2} \)
7 \( 1 + 0.565T + 7T^{2} \)
13 \( 1 + 4.37T + 13T^{2} \)
17 \( 1 - 5.62T + 17T^{2} \)
19 \( 1 + 1.21T + 19T^{2} \)
23 \( 1 + 3.60T + 23T^{2} \)
29 \( 1 - 7.87T + 29T^{2} \)
31 \( 1 - 10.5T + 31T^{2} \)
37 \( 1 - 3.12T + 37T^{2} \)
41 \( 1 + 11.4T + 41T^{2} \)
43 \( 1 - 4.29T + 43T^{2} \)
47 \( 1 + 4.55T + 47T^{2} \)
53 \( 1 - 7.21T + 53T^{2} \)
59 \( 1 + 5.16T + 59T^{2} \)
61 \( 1 + 7.19T + 61T^{2} \)
67 \( 1 + 11.8T + 67T^{2} \)
71 \( 1 + 3.77T + 71T^{2} \)
73 \( 1 + 4.24T + 73T^{2} \)
79 \( 1 - 12.1T + 79T^{2} \)
83 \( 1 + 9.29T + 83T^{2} \)
89 \( 1 + 14.6T + 89T^{2} \)
97 \( 1 + 7.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.143493651404025720872464538303, −7.62849974177563481714351138134, −6.90988700897842511253957576874, −6.03517531670198923791092420298, −4.80239766892848774578039224572, −4.00723651834487675977631567847, −3.09441268006644563195360493793, −2.65542704816865940859131242919, −1.40113026715751502222279800756, 0, 1.40113026715751502222279800756, 2.65542704816865940859131242919, 3.09441268006644563195360493793, 4.00723651834487675977631567847, 4.80239766892848774578039224572, 6.03517531670198923791092420298, 6.90988700897842511253957576874, 7.62849974177563481714351138134, 8.143493651404025720872464538303

Graph of the $Z$-function along the critical line