L(s) = 1 | + (−4.5 + 7.79i)5-s + (−15.5 − 26.8i)7-s + (7.5 + 12.9i)11-s + (18.5 − 32.0i)13-s + 42·17-s + 28·19-s + (−97.5 + 168. i)23-s + (22 + 38.1i)25-s + (55.5 + 96.1i)29-s + (−102.5 + 177. i)31-s + 279·35-s − 166·37-s + (−130.5 + 226. i)41-s + (−21.5 − 37.2i)43-s + (−88.5 − 153. i)47-s + ⋯ |
L(s) = 1 | + (−0.402 + 0.697i)5-s + (−0.836 − 1.44i)7-s + (0.205 + 0.356i)11-s + (0.394 − 0.683i)13-s + 0.599·17-s + 0.338·19-s + (−0.883 + 1.53i)23-s + (0.175 + 0.304i)25-s + (0.355 + 0.615i)29-s + (−0.593 + 1.02i)31-s + 1.34·35-s − 0.737·37-s + (−0.497 + 0.860i)41-s + (−0.0762 − 0.132i)43-s + (−0.274 − 0.475i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.9414357461\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9414357461\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (4.5 - 7.79i)T + (-62.5 - 108. i)T^{2} \) |
| 7 | \( 1 + (15.5 + 26.8i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-7.5 - 12.9i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-18.5 + 32.0i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 - 42T + 4.91e3T^{2} \) |
| 19 | \( 1 - 28T + 6.85e3T^{2} \) |
| 23 | \( 1 + (97.5 - 168. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-55.5 - 96.1i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (102.5 - 177. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 166T + 5.06e4T^{2} \) |
| 41 | \( 1 + (130.5 - 226. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (21.5 + 37.2i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (88.5 + 153. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 114T + 1.48e5T^{2} \) |
| 59 | \( 1 + (79.5 - 137. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (95.5 + 165. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (210.5 - 364. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 156T + 3.57e5T^{2} \) |
| 73 | \( 1 - 182T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-566.5 - 981. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-541.5 - 937. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 1.05e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-450.5 - 780. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77917725759148092271318369268, −10.23148323017230714257345455513, −9.410260275127040418797247643904, −7.969441525830167702290528977839, −7.24356115688758323629364233179, −6.55978718274516047111938178397, −5.24115256974848884317836032062, −3.69613215484793512993523963489, −3.31349511894806453452290979204, −1.23253564219819021721158489995,
0.33556561062097868471125577813, 2.13365243459226088686900512136, 3.42685737800402894206051423204, 4.63672822057916849006697735645, 5.83381891554021431946591178676, 6.48104280476927233795848594527, 7.965799518611042591148609586694, 8.774372866397727631277820961578, 9.343681836236453533628441478390, 10.40894919483553110190630612972