| L(s)  = 1  |   + (0.707 − 0.707i)2-s     − 1.00i·4-s   + (0.707 − 0.707i)5-s     + i·7-s   + (−0.707 − 0.707i)8-s     − 1.00i·10-s   + (−0.707 + 0.707i)11-s     + (−1 + i)13-s   + (0.707 + 0.707i)14-s     − 1.00·16-s   − 1.41i·17-s       + (−0.707 − 0.707i)20-s     + 1.00i·22-s         + 1.41i·26-s     + 1.00·28-s    + ⋯ | 
 
| L(s)  = 1  |   + (0.707 − 0.707i)2-s     − 1.00i·4-s   + (0.707 − 0.707i)5-s     + i·7-s   + (−0.707 − 0.707i)8-s     − 1.00i·10-s   + (−0.707 + 0.707i)11-s     + (−1 + i)13-s   + (0.707 + 0.707i)14-s     − 1.00·16-s   − 1.41i·17-s       + (−0.707 − 0.707i)20-s     + 1.00i·22-s         + 1.41i·26-s     + 1.00·28-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(1.216265391\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.216265391\)  | 
    
    
        
      |  \(L(1)\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 + (-0.707 + 0.707i)T \)  | 
 | 3 |  \( 1 \)  | 
| good | 5 |  \( 1 + (-0.707 + 0.707i)T - iT^{2} \)  | 
 | 7 |  \( 1 - iT - T^{2} \)  | 
 | 11 |  \( 1 + (0.707 - 0.707i)T - iT^{2} \)  | 
 | 13 |  \( 1 + (1 - i)T - iT^{2} \)  | 
 | 17 |  \( 1 + 1.41iT - T^{2} \)  | 
 | 19 |  \( 1 - iT^{2} \)  | 
 | 23 |  \( 1 + T^{2} \)  | 
 | 29 |  \( 1 + iT^{2} \)  | 
 | 31 |  \( 1 - T + T^{2} \)  | 
 | 37 |  \( 1 + iT^{2} \)  | 
 | 41 |  \( 1 + T^{2} \)  | 
 | 43 |  \( 1 + (1 + i)T + iT^{2} \)  | 
 | 47 |  \( 1 - 1.41iT - T^{2} \)  | 
 | 53 |  \( 1 + (0.707 - 0.707i)T - iT^{2} \)  | 
 | 59 |  \( 1 - iT^{2} \)  | 
 | 61 |  \( 1 - iT^{2} \)  | 
 | 67 |  \( 1 + (-1 + i)T - iT^{2} \)  | 
 | 71 |  \( 1 + 1.41T + T^{2} \)  | 
 | 73 |  \( 1 + iT - T^{2} \)  | 
 | 79 |  \( 1 + T^{2} \)  | 
 | 83 |  \( 1 + (0.707 + 0.707i)T + iT^{2} \)  | 
 | 89 |  \( 1 - 1.41T + T^{2} \)  | 
 | 97 |  \( 1 - T + T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−11.55293476886667045899638210271, −10.22037721964235543898145333497, −9.478054472216611856689181416419, −8.976497423871855767675419856033, −7.36313114954289662332727941628, −6.17306625928658912296584275359, −5.07640945539313864995736517812, −4.71388316553114415104045157819, −2.79685177606582793573701173399, −1.92571696198638370433387376998, 
2.59097517581282865672808478937, 3.64572877319623334347323177999, 4.95121193538855816691733734501, 5.94129394461114701075032964697, 6.74305470865466984333616645250, 7.73768074330630743817850565657, 8.423625649063914643811153903773, 10.07811484228286977577933485556, 10.46200996594786302416744238994, 11.58706984603199617260118832604