Properties

Label 2-432-432.203-c1-0-33
Degree $2$
Conductor $432$
Sign $-0.486 + 0.873i$
Analytic cond. $3.44953$
Root an. cond. $1.85729$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.29 − 0.560i)2-s + (0.335 + 1.69i)3-s + (1.37 + 1.45i)4-s + (−4.04 + 0.353i)5-s + (0.517 − 2.39i)6-s + (−0.174 − 0.0633i)7-s + (−0.963 − 2.65i)8-s + (−2.77 + 1.13i)9-s + (5.45 + 1.80i)10-s + (3.97 + 0.348i)11-s + (−2.01 + 2.81i)12-s + (−0.940 − 1.34i)13-s + (0.190 + 0.179i)14-s + (−1.95 − 6.75i)15-s + (−0.239 + 3.99i)16-s + (−6.25 − 3.61i)17-s + ⋯
L(s)  = 1  + (−0.918 − 0.396i)2-s + (0.193 + 0.981i)3-s + (0.685 + 0.727i)4-s + (−1.80 + 0.158i)5-s + (0.211 − 0.977i)6-s + (−0.0657 − 0.0239i)7-s + (−0.340 − 0.940i)8-s + (−0.925 + 0.379i)9-s + (1.72 + 0.571i)10-s + (1.19 + 0.104i)11-s + (−0.581 + 0.813i)12-s + (−0.260 − 0.372i)13-s + (0.0509 + 0.0480i)14-s + (−0.505 − 1.74i)15-s + (−0.0598 + 0.998i)16-s + (−1.51 − 0.875i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.486 + 0.873i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.486 + 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $-0.486 + 0.873i$
Analytic conductor: \(3.44953\)
Root analytic conductor: \(1.85729\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (203, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :1/2),\ -0.486 + 0.873i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0801702 - 0.136485i\)
\(L(\frac12)\) \(\approx\) \(0.0801702 - 0.136485i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.29 + 0.560i)T \)
3 \( 1 + (-0.335 - 1.69i)T \)
good5 \( 1 + (4.04 - 0.353i)T + (4.92 - 0.868i)T^{2} \)
7 \( 1 + (0.174 + 0.0633i)T + (5.36 + 4.49i)T^{2} \)
11 \( 1 + (-3.97 - 0.348i)T + (10.8 + 1.91i)T^{2} \)
13 \( 1 + (0.940 + 1.34i)T + (-4.44 + 12.2i)T^{2} \)
17 \( 1 + (6.25 + 3.61i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.550 - 2.05i)T + (-16.4 - 9.5i)T^{2} \)
23 \( 1 + (0.510 + 1.40i)T + (-17.6 + 14.7i)T^{2} \)
29 \( 1 + (-3.64 + 5.20i)T + (-9.91 - 27.2i)T^{2} \)
31 \( 1 + (3.40 + 9.35i)T + (-23.7 + 19.9i)T^{2} \)
37 \( 1 + (-2.30 + 0.617i)T + (32.0 - 18.5i)T^{2} \)
41 \( 1 + (0.875 - 4.96i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (-0.345 + 3.94i)T + (-42.3 - 7.46i)T^{2} \)
47 \( 1 + (7.00 + 2.54i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 + (1.76 - 1.76i)T - 53iT^{2} \)
59 \( 1 + (-0.934 - 10.6i)T + (-58.1 + 10.2i)T^{2} \)
61 \( 1 + (2.60 - 1.21i)T + (39.2 - 46.7i)T^{2} \)
67 \( 1 + (1.64 - 1.15i)T + (22.9 - 62.9i)T^{2} \)
71 \( 1 + (5.42 + 3.12i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (8.58 - 4.95i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (8.88 - 1.56i)T + (74.2 - 27.0i)T^{2} \)
83 \( 1 + (-5.36 - 3.75i)T + (28.3 + 77.9i)T^{2} \)
89 \( 1 + (-6.42 - 11.1i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-9.12 + 7.65i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94457062196268849828126674142, −9.907987961497746306647887620091, −9.044899326807261720464505570127, −8.306799372599770033265829830298, −7.49970494261351556234724896031, −6.45756980057589967262361379347, −4.42023641034472001404250005317, −3.88185245869701089672733641736, −2.71142957746977573117288559201, −0.13473455849882089686311507326, 1.50607099626570441272197708750, 3.28012821271402693742789703376, 4.67430231983801808463540437596, 6.48656641862154283676372614021, 6.90397730894911817234646254639, 7.82401029053018512492863294160, 8.693547092787456136137787804109, 9.043436290391919694953372255646, 10.81826093097437382783430971618, 11.42711840624280189296699613265

Graph of the $Z$-function along the critical line