L(s) = 1 | + (3 + 1.73i)5-s + (3 − 1.73i)7-s + (−1.5 − 2.59i)11-s + (−2 + 3.46i)13-s − 1.73i·17-s + 1.73i·19-s + (3.5 + 6.06i)25-s + (3 − 1.73i)29-s + 12·35-s + 2·37-s + (4.5 + 2.59i)41-s + (−4.5 + 2.59i)43-s + (−6 − 10.3i)47-s + (2.5 − 4.33i)49-s − 10.3i·55-s + ⋯ |
L(s) = 1 | + (1.34 + 0.774i)5-s + (1.13 − 0.654i)7-s + (−0.452 − 0.783i)11-s + (−0.554 + 0.960i)13-s − 0.420i·17-s + 0.397i·19-s + (0.700 + 1.21i)25-s + (0.557 − 0.321i)29-s + 2.02·35-s + 0.328·37-s + (0.702 + 0.405i)41-s + (−0.686 + 0.396i)43-s + (−0.875 − 1.51i)47-s + (0.357 − 0.618i)49-s − 1.40i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.82414 + 0.159592i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.82414 + 0.159592i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-3 - 1.73i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-3 + 1.73i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.5 + 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2 - 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 1.73iT - 17T^{2} \) |
| 19 | \( 1 - 1.73iT - 19T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 1.73i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (-4.5 - 2.59i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.5 - 2.59i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6 + 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (7.5 - 12.9i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.5 - 4.33i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + 11T + 73T^{2} \) |
| 79 | \( 1 + (3 - 1.73i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6 - 10.3i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 13.8iT - 89T^{2} \) |
| 97 | \( 1 + (6.5 + 11.2i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.07176264594324387013343194173, −10.29988898878329244917503481632, −9.578784711289756383359066857849, −8.431880234787505341214263221764, −7.40690618741650001866817120147, −6.48228486428504359883928337938, −5.49725288943448370758910298446, −4.44532784685833394022858043204, −2.82790684700660830506267903358, −1.65220790002750827038030857601,
1.57542735696016145572239816235, 2.59467094678548112024010140714, 4.75018633803456829721590010696, 5.21924573534387190387217921712, 6.17499877304241357026965110457, 7.62672481306386818099620522974, 8.458084611072879884755543794328, 9.359795178654280035191976249498, 10.12470483992920131287663712728, 11.01963095866036898035130123639