L(s) = 1 | + (3 − 1.73i)5-s + (−3 − 1.73i)7-s + (1.5 − 2.59i)11-s + (−2 − 3.46i)13-s + 1.73i·17-s + 1.73i·19-s + (3.5 − 6.06i)25-s + (3 + 1.73i)29-s − 12·35-s + 2·37-s + (4.5 − 2.59i)41-s + (4.5 + 2.59i)43-s + (6 − 10.3i)47-s + (2.5 + 4.33i)49-s − 10.3i·55-s + ⋯ |
L(s) = 1 | + (1.34 − 0.774i)5-s + (−1.13 − 0.654i)7-s + (0.452 − 0.783i)11-s + (−0.554 − 0.960i)13-s + 0.420i·17-s + 0.397i·19-s + (0.700 − 1.21i)25-s + (0.557 + 0.321i)29-s − 2.02·35-s + 0.328·37-s + (0.702 − 0.405i)41-s + (0.686 + 0.396i)43-s + (0.875 − 1.51i)47-s + (0.357 + 0.618i)49-s − 1.40i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.21484 - 0.850645i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.21484 - 0.850645i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-3 + 1.73i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (3 + 1.73i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2 + 3.46i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 1.73iT - 17T^{2} \) |
| 19 | \( 1 - 1.73iT - 19T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 - 1.73i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (-4.5 + 2.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.5 - 2.59i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6 + 10.3i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (-7.5 - 12.9i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.5 - 4.33i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + 11T + 73T^{2} \) |
| 79 | \( 1 + (-3 - 1.73i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6 - 10.3i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 13.8iT - 89T^{2} \) |
| 97 | \( 1 + (6.5 - 11.2i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61456897086487436118089219930, −10.07173101061125351063248246479, −9.287798202758838813939151838680, −8.451901125314785259570138708452, −7.13274674812778650679293194967, −6.06187582747754776564625366440, −5.48529636273382936352265085934, −4.01940961596757509717694212083, −2.71402073944986996094806671159, −0.984220114394896104255839891117,
2.09013664612086224347884959080, 2.94519397584256455632706115059, 4.58081460074275865594571834361, 5.93091379054414077207690716368, 6.52233848021236072823260087328, 7.32416465888573067728766098267, 9.102046366838316186436408253754, 9.520856357497638041170657608765, 10.15184200768122808982404093028, 11.29488272343029586776374600230