Properties

Label 2-432-36.11-c1-0-5
Degree $2$
Conductor $432$
Sign $0.342 + 0.939i$
Analytic cond. $3.44953$
Root an. cond. $1.85729$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3 − 1.73i)5-s + (−3 − 1.73i)7-s + (1.5 − 2.59i)11-s + (−2 − 3.46i)13-s + 1.73i·17-s + 1.73i·19-s + (3.5 − 6.06i)25-s + (3 + 1.73i)29-s − 12·35-s + 2·37-s + (4.5 − 2.59i)41-s + (4.5 + 2.59i)43-s + (6 − 10.3i)47-s + (2.5 + 4.33i)49-s − 10.3i·55-s + ⋯
L(s)  = 1  + (1.34 − 0.774i)5-s + (−1.13 − 0.654i)7-s + (0.452 − 0.783i)11-s + (−0.554 − 0.960i)13-s + 0.420i·17-s + 0.397i·19-s + (0.700 − 1.21i)25-s + (0.557 + 0.321i)29-s − 2.02·35-s + 0.328·37-s + (0.702 − 0.405i)41-s + (0.686 + 0.396i)43-s + (0.875 − 1.51i)47-s + (0.357 + 0.618i)49-s − 1.40i·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $0.342 + 0.939i$
Analytic conductor: \(3.44953\)
Root analytic conductor: \(1.85729\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (143, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :1/2),\ 0.342 + 0.939i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.21484 - 0.850645i\)
\(L(\frac12)\) \(\approx\) \(1.21484 - 0.850645i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (-3 + 1.73i)T + (2.5 - 4.33i)T^{2} \)
7 \( 1 + (3 + 1.73i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (2 + 3.46i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 - 1.73iT - 17T^{2} \)
19 \( 1 - 1.73iT - 19T^{2} \)
23 \( 1 + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-3 - 1.73i)T + (14.5 + 25.1i)T^{2} \)
31 \( 1 + (15.5 - 26.8i)T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + (-4.5 + 2.59i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-4.5 - 2.59i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + (-6 + 10.3i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + (-7.5 - 12.9i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (7.5 - 4.33i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 + 11T + 73T^{2} \)
79 \( 1 + (-3 - 1.73i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (6 - 10.3i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 - 13.8iT - 89T^{2} \)
97 \( 1 + (6.5 - 11.2i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.61456897086487436118089219930, −10.07173101061125351063248246479, −9.287798202758838813939151838680, −8.451901125314785259570138708452, −7.13274674812778650679293194967, −6.06187582747754776564625366440, −5.48529636273382936352265085934, −4.01940961596757509717694212083, −2.71402073944986996094806671159, −0.984220114394896104255839891117, 2.09013664612086224347884959080, 2.94519397584256455632706115059, 4.58081460074275865594571834361, 5.93091379054414077207690716368, 6.52233848021236072823260087328, 7.32416465888573067728766098267, 9.102046366838316186436408253754, 9.520856357497638041170657608765, 10.15184200768122808982404093028, 11.29488272343029586776374600230

Graph of the $Z$-function along the critical line