| L(s) = 1 | + (0.265 − 1.71i)3-s + (0.601 − 1.65i)5-s + (−3.31 − 0.584i)7-s + (−2.85 − 0.908i)9-s + (−1.91 + 0.696i)11-s + (3.10 − 2.60i)13-s + (−2.66 − 1.46i)15-s + (−2.93 + 1.69i)17-s + (−2.04 − 1.17i)19-s + (−1.88 + 5.52i)21-s + (−0.695 − 3.94i)23-s + (1.46 + 1.22i)25-s + (−2.31 + 4.65i)27-s + (1.89 − 2.25i)29-s + (4.69 − 0.827i)31-s + ⋯ |
| L(s) = 1 | + (0.153 − 0.988i)3-s + (0.268 − 0.738i)5-s + (−1.25 − 0.221i)7-s + (−0.953 − 0.302i)9-s + (−0.577 + 0.210i)11-s + (0.862 − 0.723i)13-s + (−0.688 − 0.378i)15-s + (−0.710 + 0.410i)17-s + (−0.468 − 0.270i)19-s + (−0.410 + 1.20i)21-s + (−0.145 − 0.822i)23-s + (0.292 + 0.245i)25-s + (−0.445 + 0.895i)27-s + (0.351 − 0.418i)29-s + (0.842 − 0.148i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.864 + 0.503i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.864 + 0.503i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.259614 - 0.961644i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.259614 - 0.961644i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.265 + 1.71i)T \) |
| good | 5 | \( 1 + (-0.601 + 1.65i)T + (-3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (3.31 + 0.584i)T + (6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (1.91 - 0.696i)T + (8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (-3.10 + 2.60i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (2.93 - 1.69i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.04 + 1.17i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.695 + 3.94i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (-1.89 + 2.25i)T + (-5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (-4.69 + 0.827i)T + (29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (-4.41 - 7.65i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (6.67 + 7.95i)T + (-7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (1.29 + 3.55i)T + (-32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-2.19 + 12.4i)T + (-44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 + 10.0iT - 53T^{2} \) |
| 59 | \( 1 + (6.19 + 2.25i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (0.0727 - 0.412i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (-7.81 - 9.30i)T + (-11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (-7.57 - 13.1i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.87 + 10.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.00 + 5.97i)T + (-13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (-12.5 - 10.5i)T + (14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (2.81 + 1.62i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-10.7 + 3.90i)T + (74.3 - 62.3i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71577275401514080584282907209, −9.869369745883072535793135149099, −8.680343367463443719617803507038, −8.244148815372783730040128971486, −6.83630236267334026212864039170, −6.28867696584037240134700409028, −5.14581301363174854779304585383, −3.57499681144557504339005167883, −2.31588276772709405221883656356, −0.59617609884083701834520281031,
2.61596677244803685813330593183, 3.44061317390885110880531833849, 4.63443801298924821624447732029, 6.04334043498032492788435108615, 6.54906833081690978944706258101, 8.019833573545838461153539154723, 9.148925846925365547340505361989, 9.648202801998353176737819346637, 10.67245431130992563720510582305, 11.12885192795181272072563375253