| L(s) = 1 | + (1.35 + 1.07i)3-s + (1.16 − 3.20i)5-s + (−4.32 − 0.763i)7-s + (0.697 + 2.91i)9-s + (3.88 − 1.41i)11-s + (4.63 − 3.89i)13-s + (5.01 − 3.10i)15-s + (0.945 − 0.546i)17-s + (2.45 + 1.41i)19-s + (−5.06 − 5.68i)21-s + (0.327 + 1.85i)23-s + (−5.05 − 4.24i)25-s + (−2.18 + 4.71i)27-s + (−3.45 + 4.12i)29-s + (−1.52 + 0.268i)31-s + ⋯ |
| L(s) = 1 | + (0.785 + 0.619i)3-s + (0.520 − 1.43i)5-s + (−1.63 − 0.288i)7-s + (0.232 + 0.972i)9-s + (1.17 − 0.426i)11-s + (1.28 − 1.07i)13-s + (1.29 − 0.800i)15-s + (0.229 − 0.132i)17-s + (0.562 + 0.324i)19-s + (−1.10 − 1.23i)21-s + (0.0681 + 0.386i)23-s + (−1.01 − 0.848i)25-s + (−0.419 + 0.907i)27-s + (−0.642 + 0.765i)29-s + (−0.273 + 0.0481i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.471i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.881 + 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.74618 - 0.437988i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.74618 - 0.437988i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.35 - 1.07i)T \) |
| good | 5 | \( 1 + (-1.16 + 3.20i)T + (-3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (4.32 + 0.763i)T + (6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (-3.88 + 1.41i)T + (8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (-4.63 + 3.89i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (-0.945 + 0.546i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.45 - 1.41i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.327 - 1.85i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (3.45 - 4.12i)T + (-5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (1.52 - 0.268i)T + (29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (2.48 + 4.31i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.29 + 3.92i)T + (-7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (1.43 + 3.93i)T + (-32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (1.51 - 8.60i)T + (-44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 - 12.1iT - 53T^{2} \) |
| 59 | \( 1 + (3.09 + 1.12i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (0.463 - 2.62i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (2.32 + 2.77i)T + (-11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (-0.842 - 1.45i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (5.58 - 9.66i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.26 + 7.46i)T + (-13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (-0.240 - 0.201i)T + (14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (-6.60 - 3.81i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.903 + 0.328i)T + (74.3 - 62.3i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79905049324743063618490275520, −9.926404668277797432621255650937, −9.047594366642495423322757223851, −8.899267329972668257786397341890, −7.57605528203042318173974241072, −6.15475790794760648088458998828, −5.36263507329391339255048262439, −3.88425912351632980744488802632, −3.28044528031705971151749696817, −1.23064618958256725927032933829,
1.87791413894661968333443236729, 3.15021167639863114685867594775, 3.75843596919828143242266295487, 6.24534544343088569550691426081, 6.49312853327414911628863276780, 7.17606212350023795481263127081, 8.674988201719209631931722771524, 9.511900967336719976166830442261, 9.984018695682134171780814388747, 11.33033859531463731266781237076