Properties

Label 2-432-1.1-c5-0-0
Degree $2$
Conductor $432$
Sign $1$
Analytic cond. $69.2858$
Root an. cond. $8.32380$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 58.7·5-s − 167·7-s − 764.·11-s − 235·13-s − 176.·17-s − 1.36e3·19-s − 2.41e3·23-s + 331·25-s − 470.·29-s − 3.50e3·31-s + 9.81e3·35-s + 1.31e4·37-s − 9.40e3·41-s − 104·43-s − 2.05e4·47-s + 1.10e4·49-s + 1.05e3·53-s + 4.49e4·55-s + 3.07e4·59-s − 7.39e3·61-s + 1.38e4·65-s − 3.88e4·67-s − 2.46e3·71-s + 5.46e3·73-s + 1.27e5·77-s + 8.29e4·79-s − 1.32e4·83-s + ⋯
L(s)  = 1  − 1.05·5-s − 1.28·7-s − 1.90·11-s − 0.385·13-s − 0.148·17-s − 0.864·19-s − 0.950·23-s + 0.105·25-s − 0.103·29-s − 0.654·31-s + 1.35·35-s + 1.57·37-s − 0.873·41-s − 0.00857·43-s − 1.35·47-s + 0.659·49-s + 0.0517·53-s + 2.00·55-s + 1.14·59-s − 0.254·61-s + 0.405·65-s − 1.05·67-s − 0.0581·71-s + 0.120·73-s + 2.45·77-s + 1.49·79-s − 0.211·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(69.2858\)
Root analytic conductor: \(8.32380\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.09688895885\)
\(L(\frac12)\) \(\approx\) \(0.09688895885\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 58.7T + 3.12e3T^{2} \)
7 \( 1 + 167T + 1.68e4T^{2} \)
11 \( 1 + 764.T + 1.61e5T^{2} \)
13 \( 1 + 235T + 3.71e5T^{2} \)
17 \( 1 + 176.T + 1.41e6T^{2} \)
19 \( 1 + 1.36e3T + 2.47e6T^{2} \)
23 \( 1 + 2.41e3T + 6.43e6T^{2} \)
29 \( 1 + 470.T + 2.05e7T^{2} \)
31 \( 1 + 3.50e3T + 2.86e7T^{2} \)
37 \( 1 - 1.31e4T + 6.93e7T^{2} \)
41 \( 1 + 9.40e3T + 1.15e8T^{2} \)
43 \( 1 + 104T + 1.47e8T^{2} \)
47 \( 1 + 2.05e4T + 2.29e8T^{2} \)
53 \( 1 - 1.05e3T + 4.18e8T^{2} \)
59 \( 1 - 3.07e4T + 7.14e8T^{2} \)
61 \( 1 + 7.39e3T + 8.44e8T^{2} \)
67 \( 1 + 3.88e4T + 1.35e9T^{2} \)
71 \( 1 + 2.46e3T + 1.80e9T^{2} \)
73 \( 1 - 5.46e3T + 2.07e9T^{2} \)
79 \( 1 - 8.29e4T + 3.07e9T^{2} \)
83 \( 1 + 1.32e4T + 3.93e9T^{2} \)
89 \( 1 + 8.97e4T + 5.58e9T^{2} \)
97 \( 1 + 4.96e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31392467081428463910182306978, −9.600763817767910630016914646700, −8.291361639162950123281856505491, −7.70895820632897237151759357920, −6.68915586665549557751331754143, −5.60880453299634060090208747587, −4.41033292044041482354793330153, −3.35320942135358464607008369916, −2.37257042212283720640328786460, −0.14869465397296450449070772514, 0.14869465397296450449070772514, 2.37257042212283720640328786460, 3.35320942135358464607008369916, 4.41033292044041482354793330153, 5.60880453299634060090208747587, 6.68915586665549557751331754143, 7.70895820632897237151759357920, 8.291361639162950123281856505491, 9.600763817767910630016914646700, 10.31392467081428463910182306978

Graph of the $Z$-function along the critical line