Properties

Label 2-43-43.11-c5-0-14
Degree $2$
Conductor $43$
Sign $0.848 + 0.528i$
Analytic cond. $6.89650$
Root an. cond. $2.62611$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.56 + 4.46i)2-s + (18.2 − 22.8i)3-s + (−0.152 + 0.667i)4-s + (−27.3 + 13.1i)5-s + 166.·6-s − 9.91·7-s + (161. − 77.6i)8-s + (−135. − 594. i)9-s + (−156. − 75.4i)10-s + (51.8 + 227. i)11-s + (12.4 + 15.6i)12-s + (41.6 − 20.0i)13-s + (−35.3 − 44.3i)14-s + (−197. + 865. i)15-s + (941. + 453. i)16-s + (869. + 418. i)17-s + ⋯
L(s)  = 1  + (0.630 + 0.790i)2-s + (1.16 − 1.46i)3-s + (−0.00476 + 0.0208i)4-s + (−0.489 + 0.235i)5-s + 1.89·6-s − 0.0764·7-s + (0.891 − 0.429i)8-s + (−0.557 − 2.44i)9-s + (−0.495 − 0.238i)10-s + (0.129 + 0.566i)11-s + (0.0249 + 0.0313i)12-s + (0.0683 − 0.0329i)13-s + (−0.0481 − 0.0604i)14-s + (−0.226 + 0.992i)15-s + (0.919 + 0.442i)16-s + (0.729 + 0.351i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.848 + 0.528i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.848 + 0.528i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $0.848 + 0.528i$
Analytic conductor: \(6.89650\)
Root analytic conductor: \(2.62611\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :5/2),\ 0.848 + 0.528i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.89556 - 0.828402i\)
\(L(\frac12)\) \(\approx\) \(2.89556 - 0.828402i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (1.11e4 + 4.78e3i)T \)
good2 \( 1 + (-3.56 - 4.46i)T + (-7.12 + 31.1i)T^{2} \)
3 \( 1 + (-18.2 + 22.8i)T + (-54.0 - 236. i)T^{2} \)
5 \( 1 + (27.3 - 13.1i)T + (1.94e3 - 2.44e3i)T^{2} \)
7 \( 1 + 9.91T + 1.68e4T^{2} \)
11 \( 1 + (-51.8 - 227. i)T + (-1.45e5 + 6.98e4i)T^{2} \)
13 \( 1 + (-41.6 + 20.0i)T + (2.31e5 - 2.90e5i)T^{2} \)
17 \( 1 + (-869. - 418. i)T + (8.85e5 + 1.11e6i)T^{2} \)
19 \( 1 + (164. - 722. i)T + (-2.23e6 - 1.07e6i)T^{2} \)
23 \( 1 + (-1.07e3 - 4.70e3i)T + (-5.79e6 + 2.79e6i)T^{2} \)
29 \( 1 + (4.81e3 + 6.03e3i)T + (-4.56e6 + 1.99e7i)T^{2} \)
31 \( 1 + (-1.27e3 - 1.60e3i)T + (-6.37e6 + 2.79e7i)T^{2} \)
37 \( 1 - 5.45e3T + 6.93e7T^{2} \)
41 \( 1 + (-7.08e3 - 8.88e3i)T + (-2.57e7 + 1.12e8i)T^{2} \)
47 \( 1 + (-2.87e3 + 1.25e4i)T + (-2.06e8 - 9.95e7i)T^{2} \)
53 \( 1 + (-2.18e4 - 1.05e4i)T + (2.60e8 + 3.26e8i)T^{2} \)
59 \( 1 + (2.02e4 + 9.77e3i)T + (4.45e8 + 5.58e8i)T^{2} \)
61 \( 1 + (1.86e4 - 2.34e4i)T + (-1.87e8 - 8.23e8i)T^{2} \)
67 \( 1 + (2.22e3 - 9.75e3i)T + (-1.21e9 - 5.85e8i)T^{2} \)
71 \( 1 + (-1.75e4 + 7.67e4i)T + (-1.62e9 - 7.82e8i)T^{2} \)
73 \( 1 + (2.53e4 - 1.22e4i)T + (1.29e9 - 1.62e9i)T^{2} \)
79 \( 1 - 3.35e4T + 3.07e9T^{2} \)
83 \( 1 + (5.17e4 - 6.49e4i)T + (-8.76e8 - 3.84e9i)T^{2} \)
89 \( 1 + (-6.99e4 + 8.77e4i)T + (-1.24e9 - 5.44e9i)T^{2} \)
97 \( 1 + (1.47e4 + 6.45e4i)T + (-7.73e9 + 3.72e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.85319173898495324630475956698, −13.72108189260544249247058475295, −13.02697183672746012296044337385, −11.75045859880930336067903120212, −9.603812409168719822037984108457, −7.85500906464217846928181010508, −7.29984903660365487736347199169, −5.98256582314714457465930620388, −3.61726563945416771167107598168, −1.56385783842239635572219766719, 2.72303878485457215326233765514, 3.80794707373951856756804767420, 4.85873212813594697165934248485, 7.918660478191489386852081495284, 8.966672984673943637711023113533, 10.36474304957149055979259574462, 11.31129096772513452592509488498, 12.79337882418206506762285696102, 14.01455347521818076833023059675, 14.78511648852249898003338594280

Graph of the $Z$-function along the critical line