Properties

Label 2-43-43.11-c5-0-13
Degree $2$
Conductor $43$
Sign $-0.496 + 0.868i$
Analytic cond. $6.89650$
Root an. cond. $2.62611$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.14 − 2.69i)2-s + (12.6 − 15.8i)3-s + (4.48 − 19.6i)4-s + (43.8 − 21.1i)5-s − 69.5·6-s + 137.·7-s + (−161. + 77.8i)8-s + (−36.9 − 161. i)9-s + (−151. − 72.7i)10-s + (52.0 + 227. i)11-s + (−254. − 318. i)12-s + (4.63 − 2.23i)13-s + (−296. − 371. i)14-s + (219. − 960. i)15-s + (−24.8 − 11.9i)16-s + (−1.21e3 − 586. i)17-s + ⋯
L(s)  = 1  + (−0.379 − 0.475i)2-s + (0.808 − 1.01i)3-s + (0.140 − 0.614i)4-s + (0.785 − 0.378i)5-s − 0.788·6-s + 1.06·7-s + (−0.893 + 0.430i)8-s + (−0.151 − 0.665i)9-s + (−0.477 − 0.230i)10-s + (0.129 + 0.567i)11-s + (−0.509 − 0.638i)12-s + (0.00761 − 0.00366i)13-s + (−0.403 − 0.506i)14-s + (0.251 − 1.10i)15-s + (−0.0242 − 0.0116i)16-s + (−1.02 − 0.491i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.496 + 0.868i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.496 + 0.868i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $-0.496 + 0.868i$
Analytic conductor: \(6.89650\)
Root analytic conductor: \(2.62611\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :5/2),\ -0.496 + 0.868i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.03014 - 1.77562i\)
\(L(\frac12)\) \(\approx\) \(1.03014 - 1.77562i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (-4.36e3 + 1.13e4i)T \)
good2 \( 1 + (2.14 + 2.69i)T + (-7.12 + 31.1i)T^{2} \)
3 \( 1 + (-12.6 + 15.8i)T + (-54.0 - 236. i)T^{2} \)
5 \( 1 + (-43.8 + 21.1i)T + (1.94e3 - 2.44e3i)T^{2} \)
7 \( 1 - 137.T + 1.68e4T^{2} \)
11 \( 1 + (-52.0 - 227. i)T + (-1.45e5 + 6.98e4i)T^{2} \)
13 \( 1 + (-4.63 + 2.23i)T + (2.31e5 - 2.90e5i)T^{2} \)
17 \( 1 + (1.21e3 + 586. i)T + (8.85e5 + 1.11e6i)T^{2} \)
19 \( 1 + (93.4 - 409. i)T + (-2.23e6 - 1.07e6i)T^{2} \)
23 \( 1 + (-469. - 2.05e3i)T + (-5.79e6 + 2.79e6i)T^{2} \)
29 \( 1 + (-2.73e3 - 3.43e3i)T + (-4.56e6 + 1.99e7i)T^{2} \)
31 \( 1 + (-579. - 726. i)T + (-6.37e6 + 2.79e7i)T^{2} \)
37 \( 1 - 3.04e3T + 6.93e7T^{2} \)
41 \( 1 + (9.69e3 + 1.21e4i)T + (-2.57e7 + 1.12e8i)T^{2} \)
47 \( 1 + (619. - 2.71e3i)T + (-2.06e8 - 9.95e7i)T^{2} \)
53 \( 1 + (-2.47e4 - 1.19e4i)T + (2.60e8 + 3.26e8i)T^{2} \)
59 \( 1 + (2.55e4 + 1.22e4i)T + (4.45e8 + 5.58e8i)T^{2} \)
61 \( 1 + (-2.69e4 + 3.37e4i)T + (-1.87e8 - 8.23e8i)T^{2} \)
67 \( 1 + (-1.14e4 + 5.00e4i)T + (-1.21e9 - 5.85e8i)T^{2} \)
71 \( 1 + (1.76e4 - 7.74e4i)T + (-1.62e9 - 7.82e8i)T^{2} \)
73 \( 1 + (-1.99e3 + 959. i)T + (1.29e9 - 1.62e9i)T^{2} \)
79 \( 1 - 1.42e4T + 3.07e9T^{2} \)
83 \( 1 + (2.01e4 - 2.52e4i)T + (-8.76e8 - 3.84e9i)T^{2} \)
89 \( 1 + (6.67e4 - 8.37e4i)T + (-1.24e9 - 5.44e9i)T^{2} \)
97 \( 1 + (-4.01e4 - 1.75e5i)T + (-7.73e9 + 3.72e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.26786566463328489628587812402, −13.55841037570563138947194748977, −12.20388967299380801280303266600, −10.90620802942562607729307937967, −9.470153279504678365926216202368, −8.464189230673390418865409541595, −6.96492810319156221636874218177, −5.22756355022405536965791026680, −2.22366885472263717949700017339, −1.39022799164310995625981283528, 2.64118026952540609233162454640, 4.32633686266161270298182794034, 6.39980786922422584688738101437, 8.169143842250816107365604427952, 8.928846134891977490491494796880, 10.21858793144051925415364436840, 11.52857332985959123512337813199, 13.34179985614906589085229896867, 14.51285330660352047747651918064, 15.27521502089365965823673428042

Graph of the $Z$-function along the critical line