Properties

Label 2-43-43.11-c5-0-11
Degree $2$
Conductor $43$
Sign $-0.990 + 0.135i$
Analytic cond. $6.89650$
Root an. cond. $2.62611$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.83 − 4.81i)2-s + (−10.8 + 13.6i)3-s + (−1.31 + 5.75i)4-s + (77.8 − 37.5i)5-s + 107.·6-s − 36.5·7-s + (−144. + 69.7i)8-s + (−13.6 − 59.9i)9-s + (−479. − 230. i)10-s + (−163. − 715. i)11-s + (−64.2 − 80.5i)12-s + (−808. + 389. i)13-s + (140. + 175. i)14-s + (−335. + 1.47e3i)15-s + (1.06e3 + 511. i)16-s + (−1.33e3 − 644. i)17-s + ⋯
L(s)  = 1  + (−0.678 − 0.850i)2-s + (−0.697 + 0.875i)3-s + (−0.0410 + 0.179i)4-s + (1.39 − 0.670i)5-s + 1.21·6-s − 0.281·7-s + (−0.799 + 0.385i)8-s + (−0.0562 − 0.246i)9-s + (−1.51 − 0.730i)10-s + (−0.406 − 1.78i)11-s + (−0.128 − 0.161i)12-s + (−1.32 + 0.639i)13-s + (0.191 + 0.239i)14-s + (−0.385 + 1.68i)15-s + (1.03 + 0.499i)16-s + (−1.12 − 0.540i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 + 0.135i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.990 + 0.135i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $-0.990 + 0.135i$
Analytic conductor: \(6.89650\)
Root analytic conductor: \(2.62611\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :5/2),\ -0.990 + 0.135i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.0334746 - 0.491968i\)
\(L(\frac12)\) \(\approx\) \(0.0334746 - 0.491968i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (-1.16e4 + 3.43e3i)T \)
good2 \( 1 + (3.83 + 4.81i)T + (-7.12 + 31.1i)T^{2} \)
3 \( 1 + (10.8 - 13.6i)T + (-54.0 - 236. i)T^{2} \)
5 \( 1 + (-77.8 + 37.5i)T + (1.94e3 - 2.44e3i)T^{2} \)
7 \( 1 + 36.5T + 1.68e4T^{2} \)
11 \( 1 + (163. + 715. i)T + (-1.45e5 + 6.98e4i)T^{2} \)
13 \( 1 + (808. - 389. i)T + (2.31e5 - 2.90e5i)T^{2} \)
17 \( 1 + (1.33e3 + 644. i)T + (8.85e5 + 1.11e6i)T^{2} \)
19 \( 1 + (-129. + 566. i)T + (-2.23e6 - 1.07e6i)T^{2} \)
23 \( 1 + (392. + 1.72e3i)T + (-5.79e6 + 2.79e6i)T^{2} \)
29 \( 1 + (-2.23e3 - 2.80e3i)T + (-4.56e6 + 1.99e7i)T^{2} \)
31 \( 1 + (4.71e3 + 5.90e3i)T + (-6.37e6 + 2.79e7i)T^{2} \)
37 \( 1 + 8.02e3T + 6.93e7T^{2} \)
41 \( 1 + (-1.11e4 - 1.39e4i)T + (-2.57e7 + 1.12e8i)T^{2} \)
47 \( 1 + (-1.17e3 + 5.16e3i)T + (-2.06e8 - 9.95e7i)T^{2} \)
53 \( 1 + (-1.16e4 - 5.60e3i)T + (2.60e8 + 3.26e8i)T^{2} \)
59 \( 1 + (-5.44e3 - 2.62e3i)T + (4.45e8 + 5.58e8i)T^{2} \)
61 \( 1 + (-2.13e4 + 2.68e4i)T + (-1.87e8 - 8.23e8i)T^{2} \)
67 \( 1 + (656. - 2.87e3i)T + (-1.21e9 - 5.85e8i)T^{2} \)
71 \( 1 + (-1.65e3 + 7.24e3i)T + (-1.62e9 - 7.82e8i)T^{2} \)
73 \( 1 + (-601. + 289. i)T + (1.29e9 - 1.62e9i)T^{2} \)
79 \( 1 + 5.08e4T + 3.07e9T^{2} \)
83 \( 1 + (-1.25e4 + 1.57e4i)T + (-8.76e8 - 3.84e9i)T^{2} \)
89 \( 1 + (-6.42e4 + 8.05e4i)T + (-1.24e9 - 5.44e9i)T^{2} \)
97 \( 1 + (4.79e3 + 2.09e4i)T + (-7.73e9 + 3.72e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.25698240908977500341671369448, −13.05268660744134206240736760561, −11.49690124781289139931030278300, −10.61087260234908912614485269338, −9.635466358546246792319618589241, −8.896747970672868754084956597973, −6.06199845954448854593366506624, −5.01315533510921605338820346241, −2.38342315775958372434064154666, −0.33309857798251195148498149838, 2.18499721728337221681604694103, 5.61593947043516028217436237384, 6.78827019965939389219652208372, 7.39058963877998896298173167523, 9.420810685974341264753300475837, 10.29735299402809796500841438289, 12.30558743277904644882777578841, 12.93704219032091650396107769967, 14.57709067564603189535533962630, 15.57875221609093651162811474011

Graph of the $Z$-function along the critical line