Properties

Label 2-43-43.11-c5-0-10
Degree $2$
Conductor $43$
Sign $0.922 - 0.385i$
Analytic cond. $6.89650$
Root an. cond. $2.62611$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.11 + 3.90i)2-s + (2.22 − 2.78i)3-s + (1.56 − 6.86i)4-s + (−1.98 + 0.953i)5-s + 17.8·6-s + 187.·7-s + (175. − 84.6i)8-s + (51.2 + 224. i)9-s + (−9.89 − 4.76i)10-s + (−44.1 − 193. i)11-s + (−15.6 − 19.6i)12-s + (−21.4 + 10.3i)13-s + (584. + 732. i)14-s + (−1.74 + 7.64i)15-s + (674. + 324. i)16-s + (−2.74 − 1.32i)17-s + ⋯
L(s)  = 1  + (0.550 + 0.690i)2-s + (0.142 − 0.178i)3-s + (0.0489 − 0.214i)4-s + (−0.0354 + 0.0170i)5-s + 0.202·6-s + 1.44·7-s + (0.970 − 0.467i)8-s + (0.210 + 0.923i)9-s + (−0.0312 − 0.0150i)10-s + (−0.110 − 0.482i)11-s + (−0.0314 − 0.0393i)12-s + (−0.0352 + 0.0169i)13-s + (0.796 + 0.998i)14-s + (−0.00200 + 0.00877i)15-s + (0.658 + 0.317i)16-s + (−0.00230 − 0.00111i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 - 0.385i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.922 - 0.385i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $0.922 - 0.385i$
Analytic conductor: \(6.89650\)
Root analytic conductor: \(2.62611\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :5/2),\ 0.922 - 0.385i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.55222 + 0.511290i\)
\(L(\frac12)\) \(\approx\) \(2.55222 + 0.511290i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (1.03e4 - 6.30e3i)T \)
good2 \( 1 + (-3.11 - 3.90i)T + (-7.12 + 31.1i)T^{2} \)
3 \( 1 + (-2.22 + 2.78i)T + (-54.0 - 236. i)T^{2} \)
5 \( 1 + (1.98 - 0.953i)T + (1.94e3 - 2.44e3i)T^{2} \)
7 \( 1 - 187.T + 1.68e4T^{2} \)
11 \( 1 + (44.1 + 193. i)T + (-1.45e5 + 6.98e4i)T^{2} \)
13 \( 1 + (21.4 - 10.3i)T + (2.31e5 - 2.90e5i)T^{2} \)
17 \( 1 + (2.74 + 1.32i)T + (8.85e5 + 1.11e6i)T^{2} \)
19 \( 1 + (137. - 604. i)T + (-2.23e6 - 1.07e6i)T^{2} \)
23 \( 1 + (702. + 3.07e3i)T + (-5.79e6 + 2.79e6i)T^{2} \)
29 \( 1 + (-1.57e3 - 1.97e3i)T + (-4.56e6 + 1.99e7i)T^{2} \)
31 \( 1 + (5.17e3 + 6.48e3i)T + (-6.37e6 + 2.79e7i)T^{2} \)
37 \( 1 + 1.32e4T + 6.93e7T^{2} \)
41 \( 1 + (-4.65e3 - 5.84e3i)T + (-2.57e7 + 1.12e8i)T^{2} \)
47 \( 1 + (2.29e3 - 1.00e4i)T + (-2.06e8 - 9.95e7i)T^{2} \)
53 \( 1 + (-9.15e3 - 4.40e3i)T + (2.60e8 + 3.26e8i)T^{2} \)
59 \( 1 + (-2.09e4 - 1.00e4i)T + (4.45e8 + 5.58e8i)T^{2} \)
61 \( 1 + (3.86e3 - 4.84e3i)T + (-1.87e8 - 8.23e8i)T^{2} \)
67 \( 1 + (-5.78e3 + 2.53e4i)T + (-1.21e9 - 5.85e8i)T^{2} \)
71 \( 1 + (1.11e4 - 4.89e4i)T + (-1.62e9 - 7.82e8i)T^{2} \)
73 \( 1 + (6.31e4 - 3.04e4i)T + (1.29e9 - 1.62e9i)T^{2} \)
79 \( 1 + 5.68e4T + 3.07e9T^{2} \)
83 \( 1 + (-5.10e4 + 6.40e4i)T + (-8.76e8 - 3.84e9i)T^{2} \)
89 \( 1 + (-3.67e3 + 4.60e3i)T + (-1.24e9 - 5.44e9i)T^{2} \)
97 \( 1 + (6.47e3 + 2.83e4i)T + (-7.73e9 + 3.72e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.77395278937667532280074047778, −14.13476606523909613856565274377, −13.09276988040944217999307207640, −11.35633608592370139513374097439, −10.37818663713670571223171605310, −8.334668820557957419387206099010, −7.33237874432277231994682174873, −5.63601856883599625503613693410, −4.51869792245307990930040450308, −1.71826592482323601813357322770, 1.82308834183047882635416530970, 3.73529664035081009823964987518, 5.02260010348877826636337237736, 7.31185717589690274182801202265, 8.610738905899714518719549268961, 10.31500972388529954876829694846, 11.58167519112781085253328441396, 12.26784271178981371847337911366, 13.67002906544338578714140264079, 14.65908345487112928681981724847

Graph of the $Z$-function along the critical line