L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (0.382 − 0.662i)5-s − 0.999i·8-s + (−0.662 + 0.382i)10-s + 1.84i·13-s + (−0.5 + 0.866i)16-s + (0.923 + 1.60i)17-s + 0.765·20-s + (0.207 + 0.358i)25-s + (0.923 − 1.60i)26-s + (0.866 − 0.499i)32-s − 1.84i·34-s + (0.707 − 1.22i)37-s + (−0.662 − 0.382i)40-s − 1.84·41-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (0.382 − 0.662i)5-s − 0.999i·8-s + (−0.662 + 0.382i)10-s + 1.84i·13-s + (−0.5 + 0.866i)16-s + (0.923 + 1.60i)17-s + 0.765·20-s + (0.207 + 0.358i)25-s + (0.923 − 1.60i)26-s + (0.866 − 0.499i)32-s − 1.84i·34-s + (0.707 − 1.22i)37-s + (−0.662 − 0.382i)40-s − 1.84·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00394i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00394i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8203306939\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8203306939\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.382 + 0.662i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - 1.84iT - T^{2} \) |
| 17 | \( 1 + (-0.923 - 1.60i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + 1.84T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.662 - 0.382i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.662 + 0.382i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.382 - 0.662i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + 0.765iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.468780065209478078249104194928, −8.774284938377238803028031817141, −8.239429581485595079217241498317, −7.21071052449748517352230573887, −6.48799675609061171936964665971, −5.50601215422280481086706455548, −4.28679540427991386611786632376, −3.56293965515061761428463114419, −2.10166551084085750235790744150, −1.39456597428294982672270065276,
0.930240844354372354396917701343, 2.53411694799619878126008621084, 3.19947515459178824985509803432, 4.99228901949676871278130817293, 5.55702853901441104160140811979, 6.46086237627136702080673844101, 7.21038366472526322818030727045, 7.911374702681824068496355014977, 8.573081110102529831628874138354, 9.670194540165163926093693296922